faiss ivfpq索引构建
假设已有训练好的向量值,构建索引(nlist和随机样本按需选取)
import numpy as np
import faiss
import pickle
from tqdm import tqdm
import time
import os
import random# 读取嵌入向量并保留对应关系
def read_embeddings(directory, batch_size=10000):for root, dirs, files in os.walk(directory):for file in files:cur_file = os.path.join(root, file)print("Loading file >>>", cur_file)lines=[]with open(cur_file, 'r') as file:# for i in range(100000):# line = file.readline()# lines.append(line)lines = file.readlines()batch_ids = []batch_embeddings = []for i, line in enumerate(tqdm(lines, ncols=100)):if i > 0 and i % batch_size == 0:yield np.array(batch_embeddings, dtype='float32'), batch_idsbatch_ids = []batch_embeddings = []parts = line.strip().split('\t')identifier = parts[0]vector_str = parts[1]vector = np.fromstring(vector_str[1:-1], sep=',')batch_ids.append(identifier)batch_embeddings.append(vector)if batch_embeddings:yield np.array(batch_embeddings, dtype='float32'), batch_idstry:# 读取嵌入向量directory_path = './data'embeddings_batches = []ids = []for embeddings_batch, ids_batch in read_embeddings(directory_path):embeddings_batches.append(embeddings_batch)ids.extend(ids_batch)print("Data loading complete, start building the index")N = sum(batch.shape[0] for batch in embeddings_batches)D = embeddings_batches[0].shape[1]print(f"Embeddings shape: {N}x{D}")nlist = 100000m = 32n_bits = 8quantizer = faiss.IndexFlatL2(D)index = faiss.IndexIVFPQ(quantizer, D, nlist, m, n_bits)print("Start training the index...")all_embeddings=np.vstack(embeddings_batches)train_start = time.time()# 随机选择子样本进行训练sample_size = min(1000000, N) # 取最大 100,000 个样本sample_indices = random.sample(range(N), sample_size)sample_embeddings = all_embeddings[sample_indices]print("随机选取样本训练")index.train(sample_embeddings)train_end = time.time()print(f"Training completed, time taken: {(train_end - train_start) / 3600:.2f} hours")# 分批添加嵌入到索引中print("Start adding embeddings to the index...")add_start = time.time()flag=0for embeddings_batch in embeddings_batches:flag+=1if flag%100==0:print(flag)index.add(embeddings_batch)add_end = time.time()print(f"Adding embeddings completed, time taken: {(add_end - add_start) / 3600:.2f} hours")print("Start saving the index...")save_start = time.time()faiss.write_index(index, "index_ivfpq_1b.faiss")save_end = time.time()print(f"Index saved, time taken: {(save_end - save_start) / 3600:.2f} hours")index_to_identifier = {"faiss_v1_"+str(i): identifier for i, identifier in enumerate(ids)}with open('index_to_identifier_1b.pkl', 'wb') as f:pickle.dump(index_to_identifier, f)print("Index to identifier mapping saved.")
except Exception as e:print("Error occurred during index construction:", str(e))
向量查询
import time
import numpy as np
import faiss
import pickle# 加载索引
index = faiss.read_index("index_ivfpq_1b.faiss")# 加载标识符对应关系
with open('index_to_identifier_1b.pkl', 'rb') as f:index_to_identifier = pickle.load(f)
# 查询簇中心数量
index.nprobe = 100
# 限制使用的 CPU 核数
faiss.omp_set_num_threads(4) # 设置使用的线程数,可以根据你的实际需求进行调整# 直接定义查询向量和标识符
query_embedding = np.array([[-0.01962059736251831, 0.11334816366434097, -0.09471801668405533, 0.0641612783074379, 0.016695162281394005, 0.03470868244767189, 0.059329044073820114, -0.024794576689600945, -0.012960868887603283, -0.0744692012667656, -0.07942882925271988, 0.19218777120113373, 0.14370097219944, 0.11092912405729294, -0.06869585067033768, 0.08476870507001877, 0.10311301797628403, -0.09529904276132584, 0.11519007384777069, 0.07435101270675659, -0.07236043363809586, 0.010397439822554588, -0.06027359142899513, -0.08405963331460953, 0.031723152846097946, -0.1143064945936203, 0.18072178959846497, 0.07466364651918411, 0.10553380101919174, -0.10898686945438385, -0.19313931465148926, 0.15539272129535675, -0.11933872103691101, -0.13383139669895172, 0.0754752978682518, 0.04579591378569603, 0.07465954124927521, -0.0241111870855093, -0.06121497601270676, -0.10494254529476166, -0.01837378740310669, 0.1292468160390854, -0.0056768800131976604, 0.06756076216697693, -0.08115670830011368, 0.09304261207580566, 0.06945249438285828, -0.057487890124320984, 0.07290451973676682, -0.01492359396070242, 0.14174117147922516, 0.0752357617020607, 0.014304161071777344, -0.0023451936431229115, 0.08765687793493271, 0.10875667631626129, 0.1779395043849945, -0.04857892543077469, 0.054570272564888, -0.15957848727703094, 0.008002348244190216, 0.03754493221640587, 0.07620261609554291, 0.01903180405497551, 0.14646433293819427, -0.07392526417970657, 0.02997334860265255, -0.04795815050601959, 0.039741817861795425, -0.06323029100894928, -0.0361541248857975, 0.1155063807964325, -0.03679197281599045, 0.08797583729028702, -0.068557009100914, -0.14507029950618744, 0.06844533234834671, 0.09862343966960907, 0.012137680314481258, -0.012296526692807674, 0.05485907569527626, 0.08134670555591583, 0.06546603888273239, 0.10151205956935883, -0.1254400908946991, 0.06678715348243713, 0.015612985007464886, 0.03761797398328781, 0.11426421254873276, -0.10608682036399841, 0.0054876371286809444, -0.13291053473949432, -0.1383194625377655, -0.060186877846717834, 0.040753982961177826, 0.025832200422883034, 0.06087275967001915, 0.07576646655797958, -0.025103572756052017, 0.0819762796163559, 0.06338494271039963, 0.09223338961601257, 0.11740309000015259, 0.16588829457759857, 0.0016070181736722589, -0.11642675846815109, 0.06580012291669846, 0.07179497182369232, -0.11596480011940002, 0.05284847319126129, 0.018308958038687706, 0.2823641896247864, 0.0026317911688238382, -0.013333271257579327, -0.07727757096290588, -0.06593139469623566, 0.06467396765947342, 0.04348631948232651, 0.02083323895931244, -0.004868550691753626, -0.06408777832984924, -0.12004149705171585, 0.09156100451946259, 0.04209277778863907, 0.04682828485965729, 0.06600149720907211, 0.014075364917516708, 0.02114858292043209]], dtype='float32')query_id = "龙血王手串价格及图片" # 这里添加你的查询向量对应的标识符s = time.time()# 确定查询向量的数量和维度
num_queries, D = query_embedding.shape# 进行搜索
k = 10 # 返回前 k 个最近邻
distances, indices = index.search(query_embedding, k)# 显示查询结果
print(f"Query ID: {query_id}")
print("Top k results:")
for j in range(k):idx = indices[0, j]distance = distances[0, j]if idx != -1: # 有效索引idx="faiss_v1_"+str(idx)identifier = index_to_identifier.get(idx, "Unknown")print(f" {j+1}. ID: {identifier}, Distance: {distance}")else:print(f" {j+1}. No result")e = time.time()
print(f"Time taken for search: {e - s} seconds")
相关文章:
faiss ivfpq索引构建
假设已有训练好的向量值,构建索引(nlist和随机样本按需选取) import numpy as np import faiss import pickle from tqdm import tqdm import time import os import random# 读取嵌入向量并保留对应关系 def read_embeddings(directory, ba…...

ffmpeg视频编码原理和实战-(2)视频帧的创建和编码packet压缩
源文件: #include <iostream> using namespace std; extern "C" { //指定函数是c语言函数,函数名不包含重载标注 //引用ffmpeg头文件 #include <libavcodec/avcodec.h> } //预处理指令导入库 #pragma comment(lib,"avcodec.…...
数据结构:线索二叉树
目录 1.线索二叉树是什么? 2.包含头文件 3.结点设计 4.接口函数定义 5.接口函数实现 线索二叉树是什么? 线索二叉树(Threaded Binary Tree)是一种对普通二叉树的扩展,它通过在树的某些空指针上添加线索来实现更高效的遍…...

宝塔Linux面板-Docker管理(2024详解)
上一篇文章《宝塔Linux可视化运维面板-详细教程2024》,详细介绍了宝塔Linux面板的详细安装和配置方法。本文详细介绍使用Linux面板管理服务器Docker环境。 目录 1、安装Docker 1.1 在线安装 编辑 1.2 手动安装 1.3 运行状态 1.4 镜像加速 2 应用商店 3 总览 4 容器 …...

【Linux】进程(8):Linux真正是如何调度的
大家好,我是苏貝,本篇博客带大家了解Linux进程(8):Linux真正是如何调度的,如果你觉得我写的还不错的话,可以给我一个赞👍吗,感谢❤️ 目录 之前我们讲过,在大…...

R语言探索与分析14-美国房价及其影响因素分析
一、选题背景 以多元线性回归统计模型为基础,用R语言对美国部分地区房价数据进行建模预测,进而探究提高多元回 归线性模型精度的方法。先对数据进行探索性预处理,随后设置虚拟变量并建模得出预测结果,再使用方差膨胀因子对 多重共…...
golang websocket 数据处理和返回JSON数据示例
golang中websocket数据处理和返回json数据示例, 直接上代码: // author tekintiangmail.com // golang websocket 数据处理和返回JSON数据示例, // 这个函数返回 http.HandlerFunc // 将http请求升级为websocket请求 这个需要依赖第三方包 …...

【Mac】Downie 4 for Mac(视频download工具)兼容14系统软件介绍及安装教程
前言 Downie 每周都会更新一个版本适配视频网站,如果遇到视频download不了的情况,请搜索最新版本https://mac.shuiche.cc/search/downie。 注意:Downie Mac特别版不能升级,在设置中找到更新一列,把自动更新和自动downl…...

【操作系统】进程与线程的区别及总结(非常非常重要,面试必考题,其它文章可以不看,但这篇文章最后的总结你必须要看,满满的全是干货......)
目录 一、 进程1.1 PID(进程标识符)1.2 内存指针1.3 文件描述符表1.4 状态1.5 优先级1.6 记账信息1.7 上下文 二、线程三、总结:进程和线程之间的区别(非常非常非常重要,面试必考题) 一、 进程 简单来介绍一下什么是进程…...

自动驾驶仿真(高速道路)LaneKeeping
前言 A high-level decision agent trained by deep reinforcement learning (DRL) performs quantitative interpretation of behavioral planning performed in an autonomous driving (AD) highway simulation. The framework relies on the calculation of SHAP values an…...

数据挖掘实战-基于Catboost算法的艾滋病数据可视化与建模分析
🤵♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞Ǵ…...

分水岭算法分割和霍夫变换识别图像中的硬币
首先解释一下第一种分水岭算法: 一、分水岭算法 分水岭算法是一种基于拓扑学的图像分割技术,广泛应用于图像处理和计算机视觉领域。它将图像视为一个拓扑表面,其中亮度值代表高度。算法的目标是通过模拟雨水从山顶流到山谷的过程࿰…...
什么是AVIEXP提前发货通知?
EDI(电子数据交换)报文是一种用于电子商务和供应链管理的标准化信息传输格式。AVIEXP 是一种特定类型的 EDI 报文,用于传输提前发货通知信息。 AVIEXP 报文简介 AVIEXP 是指 Advanced Shipping Notification提前发货通知报文,用…...

Python 之SQLAlchemy使用详细说明
目录 1、SQLAlchemy 1.1、ORM概述 1.2、SQLAlchemy概述 1.3、SQLAlchemy的组成部分 1.4、SQLAlchemy的使用 1.4.1、安装 1.4.2、创建数据库连接 1.4.3、执行原生SQL语句 1.4.4、映射已存在的表 1.4.5、创建表 1.4.5.1、创建表的两种方式 1、使用 Table 类直接创建表…...

就业班 第四阶段(docker) 2401--5.29 day3 Dockerfile+前后段项目若依ruoyi
通过Dockerfile创建镜像 Docker 提供了一种更便捷的方式,叫作 Dockerfile docker build命令用于根据给定的Dockerfile构建Docker镜像。docker build语法: # docker build [OPTIONS] <PATH | URL | ->1. 常用选项说明 --build-arg,设…...
【运维项目经历|026】Redis智能集群构建与性能优化工程
🍁博主简介: 🏅云计算领域优质创作者 🏅2022年CSDN新星计划python赛道第一名 🏅2022年CSDN原力计划优质作者 🏅阿里云ACE认证高级工程师 🏅阿里云开发者社区专家博主 💊交流社区:CSDN云计算交流社区欢迎您的加入! 目…...
Linux编程for、while循环if判断以及case语句用法
简介 语法描述if条件语句if else条件判断语句if else-if else多条件判断语句for循环执行命令while循环执行命令until直到条件为真时停止循环case ... esac多选择语句break跳出循环continue跳出当前循环 1. for 循环 for语句,定量循环,可以遍历一个列表…...

docker命令 docker ps -l (latest)命令在 Docker 中用于列出最近一次创建的容器
文章目录 12345 1 docker ps -l 命令在 Docker 中用于列出最近一次创建的容器。具体来说: docker ps:这个命令用于列出当前正在运行的容器。-l 或 --latest:这个选项告诉 docker ps 命令只显示最近一次创建的容器,不论该容器当前…...

inflight 守恒和带宽资源守恒的有效性
接着昨天的问题,inflight 守恒的模型一定存在稳定点吗?并不是。如果相互抑制强度大于自我抑制强度,系统也会跑飞: 模拟结果如下: 所以一定要记得 a < b。 比对前两个图和后两个图的 a,b 参数关系&am…...

短视频直播教学课程小程序的作用是什么
只要短视频/直播做的好,营收通常都不在话下,近些年,线上自媒体行业热度非常高,每条细分赛道都有着博主/账号,其各种优势条件下也吸引着其他普通人冲入。 然无论老玩家还是新玩家,面对平台不断变化的规则和…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...