当前位置: 首页 > news >正文

基于Python的北京天气数据可视化分析

项目用到库

import numpy as np
import pandas as pd
import datetime
from pyecharts.charts import Line
from pyecharts.charts import Boxplot
from pyecharts.charts import Pie,Grid
from pyecharts import options as opts
from pyecharts.charts import Calendar

1.2018 年北京AQI全年走势图

代码如下:

# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')
attr = df['Date'].tolist()  # 将 Date 转换为列表
v1 = df['AQI'].tolist()  # 将 AQI 转换为列表# 创建折线图
line = (Line().add_xaxis(attr).add_yaxis("AQI值:", v1, is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.3, color="#000"), markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),opts.MarkPointItem(type_="min", name="最小值")])).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京AQI全年走势图", pos_top='5%', pos_left='center'),xaxis_opts=opts.AxisOpts(type_="category"),yaxis_opts=opts.AxisOpts(type_="value"))
)# 将图表渲染到 HTML 文件
line.render("./2018年北京AQI全年走势图.html")

结果如下: 

2.2018 年北京PM2.5全年走势图

代码如下:

# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')
attr = df['Date'].tolist()  # 将 Date 转换为列表
v1 = df['PM'].tolist()  # 将 PM 转换为列表# 创建折线图
line = (Line().add_xaxis(attr).add_yaxis("PM2.5值:", v1, is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.3, color="#000"), markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),opts.MarkPointItem(type_="min", name="最小值")])).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京PM2.5全年走势图", pos_top='5%', pos_left='center'),xaxis_opts=opts.AxisOpts(type_="category"),yaxis_opts=opts.AxisOpts(type_="value"))
)# 将图表渲染到 HTML 文件
line.render("./2018年北京PM2.5全年走势图.html")

结果如下:

3.2018 年北京月均AQI走势图

代码如下:

# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')# 提取 Date 和 AQI 的值
dom = df[['Date', 'AQI']]# 提取月份
df['month'] = df['Date'].apply(lambda x: x.split('/')[1])# 根据月份分组并计算每月的 AQI 平均值
month_com = df.groupby('month')['AQI'].mean().reset_index()# 排序月份
month_com = month_com.sort_values(by='month')# 构造月份标签
attr = ["{}月".format(i) for i in range(1, 13)]# 获取每月的 AQI 平均值
v1 = month_com['AQI'].tolist()
v1 = ["{}".format(int(i)) for i in v1]# 创建折线图
line = (Line().add_xaxis(attr).add_yaxis("AQI月均值", v1, markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),opts.MarkPointItem(type_="min", name="最小值")])).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京月均AQI走势图", pos_top='5%', pos_left='center'),xaxis_opts=opts.AxisOpts(type_="category"),yaxis_opts=opts.AxisOpts(type_="value"))
)# 渲染图表到 HTML 文件
line.render("./2018年北京月均AQI走势图.html")

结果如下:

4.2018 年北京月均PM2.5走势图

代码如下:

# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')# 提取 Date 和 PM 的值
dom = df[['Date', 'PM']]# 提取月份
df['month'] = df['Date'].apply(lambda x: x.split('/')[1])# 根据月份分组并计算每月的 PM 平均值
month_com = df.groupby('month')['PM'].mean().reset_index()# 排序月份
month_com = month_com.sort_values(by='month')# 构造月份标签
attr = ["{}月".format(i) for i in range(1, 13)]# 获取每月的 PM 平均值
v1 = month_com['PM'].tolist()
v1 = ["{}".format(int(i)) for i in v1]# 创建折线图
line = (Line().add_xaxis(attr).add_yaxis("PM2.5月均值", v1, markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),opts.MarkPointItem(type_="min", name="最小值")])).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京月均PM2.5走势图", pos_top='5%', pos_left='center'),xaxis_opts=opts.AxisOpts(type_="category"),yaxis_opts=opts.AxisOpts(type_="value"))
)# 渲染图表到 HTML 文件
line.render("./2018年北京月均PM2.5走势图.html")

结果如下:

5.2018年北京季度AQI箱形图

代码如下:

# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')# 提取 Date 和 AQI 的值
dom = df[['Date', 'AQI']]
data = [[], [], [], []]
dom1, dom2, dom3, dom4 = data# 根据季度提取 AQI 值
for date, aqi in zip(dom['Date'], dom['AQI']):month = int(date.split('/')[1])if month in [1, 2, 3]:dom1.append(aqi)elif month in [4, 5, 6]:dom2.append(aqi)elif month in [7, 8, 9]:dom3.append(aqi)else:dom4.append(aqi)# 创建箱形图
boxplot = Boxplot()# 设置 x 轴和 y 轴数据
x_axis = ['第一季度', '第二季度', '第三季度', '第四季度']
y_axis = [dom1, dom2, dom3, dom4]
y_axis = boxplot.prepare_data(y_axis)# 添加数据到箱形图
boxplot.add_xaxis(x_axis)
boxplot.add_yaxis("AQI", y_axis)# 设置图表全局选项
boxplot.set_global_opts(title_opts=opts.TitleOpts(title="2018年北京季度AQI箱形图", pos_left='center', pos_top='6%'))# 渲染图表到 HTML 文件
boxplot.render("./2018年北京季度AQI箱形图.html")

结果如下:

6.2018年北京季度PM2.5箱形图

代码如下:

# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')# 提取 Date 和 PM 的值
dom = df[['Date', 'PM']]
data = [[], [], [], []]
dom1, dom2, dom3, dom4 = data# 根据季度提取 PM 值
for date, pm in zip(dom['Date'], dom['PM']):month = int(date.split('/')[1])if month in [1, 2, 3]:dom1.append(pm)elif month in [4, 5, 6]:dom2.append(pm)elif month in [7, 8, 9]:dom3.append(pm)else:dom4.append(pm)# 创建箱形图
boxplot = Boxplot()# 设置 x 轴和 y 轴数据
x_axis = ['第一季度', '第二季度', '第三季度', '第四季度']
y_axis = [dom1, dom2, dom3, dom4]
y_axis = boxplot.prepare_data(y_axis)# 添加数据到箱形图
boxplot.add_xaxis(x_axis)
boxplot.add_yaxis("PM2.5", y_axis)# 设置图表全局选项
boxplot.set_global_opts(title_opts=opts.TitleOpts(title="2018年北京季度PM2.5箱形图", pos_left='center', pos_top='6%'))# 渲染图表到 HTML 文件
boxplot.render("./2018年北京季度PM2.5箱形图.html")

结果如下:

7.2018年北京全年空气质量情况

代码如下:

# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')# 根据 Quality_grade 分组
rank_message = df.groupby(['Quality_grade'])# 计算每个 Quality_grade 的频数
rank_com = rank_message['Quality_grade'].agg(['count'])
rank_com.reset_index(inplace=True)  # 重置索引
rank_com_last = rank_com.sort_values('count', ascending=False)  # 从大到小排序# 提取 Quality_grade 和对应的频数
attr = rank_com_last['Quality_grade'].tolist()
v1 = rank_com_last['count'].tolist()# 创建饼图
pie = (Pie().add("", [list(z) for z in zip(attr, v1)], radius=["40%", "75%"], label_opts=opts.LabelOpts(is_show=True, formatter="{b}: {d}%")).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京全年空气质量情况", pos_left='center', pos_top='0'),legend_opts=opts.LegendOpts(is_show=True, orient="vertical", pos_left="left", pos_top="10%"))
)# 渲染图表到 HTML 文件
pie.render('./2018年北京全年空气质量情况.html')

结果如下:

8.2018年北京PM2.5指数日历图

代码如下:

# Read data from 'beijing_AQI_2018.csv'
df = pd.read_csv('beijing_AQI_2018.csv')# Extract 'Date' and 'PM' columns
dom = df[['Date', 'PM']]list1 = []# Compress the date and PM values into a list of lists
for i, j in zip(dom['Date'], dom['PM']):time_list = i.split('/')time = datetime.date(int(time_list[0]), int(time_list[1]), int(time_list[2]))PM = int(j)list1.append([str(time), PM])# Create a calendar chart
calendar = (Calendar(init_opts=opts.InitOpts(width="800px", height="400px")).add(series_name="2018年北京PM2.5指数日历图",yaxis_data=list1,calendar_opts=opts.CalendarOpts(range_="2018"),).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京PM2.5指数日历图", pos_left="center",pos_top='50%'),visualmap_opts=opts.VisualMapOpts(max_=300, min_=0, orient="horizontal", is_piecewise=True,pos_top='60%',  # 将视觉映射放置在图表的顶部pos_left='center'  # 将视觉映射放置在图表的水平居中位置),)
)# Render the chart to an HTML file
calendar.render('./2018年北京PM2.5指数日历图.html')

结果如下:

9.2018 年北上广深AQI全年走势图

代码如下:


citys = ['beijing', 'shanghai', 'guangzhou', 'shenzhen']
cityes_AQI = []# 遍历四个城市的数据
for city in citys:filename = city + '_AQI' + '_2018.csv'aqi_data = pd.read_csv(filename)# 提取日期和AQI指数两列内容get_data = aqi_data[['Date', 'AQI']]# 获取每行数据的月份month_for_data = [j.split('/')[1] for j in get_data['Date']]aqi_data['Month'] = month_for_data# 求每个月AQI平均值month_AQI = aqi_data.groupby(['Month'])['AQI'].mean().reset_index()# 获取每个城市月均AQI的数据,转化为int数据类型city_AQI_data_int = month_AQI['AQI'].astype(int).tolist()cityes_AQI.append(city_AQI_data_int)months = [str(i) + '月' for i in range(1, 13)]line = (Line(init_opts=opts.InitOpts(width="800px", height="400px")).add_xaxis(months).add_yaxis("北京", cityes_AQI[0], color='red', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("上海", cityes_AQI[1], color='purple', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("广州", cityes_AQI[2], color='blue', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("深圳", cityes_AQI[3], color='orange', label_opts=opts.LabelOpts(is_show=False)).set_global_opts(title_opts=opts.TitleOpts(title="2018年北上广深AQI全年走势图", pos_left='center', pos_top='0'),legend_opts=opts.LegendOpts(orient="horizontal", pos_top="8%"),)
)line.render('./2018年北上广深AQI全年走势图.html')  # 生成HTML文件,保存在当前目录下

结果如下:

10.2018 年北上广深PM2.5全年走势图

代码如下:

import numpy as np
import pandas as pd
from pyecharts.charts import Line
from pyecharts import options as optscitys = ['beijing', 'shanghai', 'guangzhou', 'shenzhen']
cityes_AQI = []# 遍历四个城市的数据
for city in citys:filename = city + '_AQI' + '_2018.csv'aqi_data = pd.read_csv(filename)# 提取日期和PM2.5指数两列内容get_data = aqi_data[['Date', 'PM']]# 获取每行数据的月份month_for_data = [j.split('/')[1] for j in get_data['Date']]aqi_data['Month'] = month_for_data# 求每个月PM2.5平均值month_AQI = aqi_data.groupby(['Month'])['PM'].mean().reset_index()# 获取每个城市月均PM2.5的数据,转化为int数据类型city_AQI_data_int = month_AQI['PM'].astype(int).tolist()cityes_AQI.append(city_AQI_data_int)months = [str(i) + '月' for i in range(1, 13)]line = (Line(init_opts=opts.InitOpts(width="800px", height="400px")).add_xaxis(months).add_yaxis("北京", cityes_AQI[0], color='red', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("上海", cityes_AQI[1], color='purple', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("广州", cityes_AQI[2], color='blue', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("深圳", cityes_AQI[3], color='orange', label_opts=opts.LabelOpts(is_show=False)).set_global_opts(title_opts=opts.TitleOpts(title="2018年北上广深PM2.5全年走势图", pos_left='center', pos_top='0'),legend_opts=opts.LegendOpts(orient="horizontal", pos_top="8%"),)
)line.render('./2018年北上广深PM2.5全年走势图.html')  # 生成HTML文件,保存在当前目录下

结果如下:

11.2018 年北上广深全年空气质量情况

代码如下:

citys = ['beijing', 'shanghai', 'guangzhou', 'shenzhen']
v = []
attrs = []
for i in range(4):filename =  citys[i] + '_AQI' + '_2018.csv'df = pd.read_csv(filename)# 根据 Quality_grade 分组Quality_grade_message = df.groupby(['Quality_grade'])# 每组的频数Quality_grade_com = Quality_grade_message['Quality_grade'].agg(['count'])Quality_grade_com.reset_index(inplace=True)Quality_grade_com_last = Quality_grade_com.sort_values('count', ascending=False)# 取 Quality_grade 的值Quality_grade_array = Quality_grade_com_last['Quality_grade'].values.tolist()attrs.append(Quality_grade_array)Quality_grade_count = Quality_grade_com_last['count'].values.tolist()v.append(Quality_grade_count)# 创建饼图并设置属性
pie1 = (Pie().add("北京", [list(z) for z in zip(attrs[0], v[0])], radius=["20%", "40%"], center=["30%", "27%"],).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")).set_global_opts(title_opts=opts.TitleOpts(title="北京", pos_left='27%', pos_top='25%'),legend_opts=opts.LegendOpts(orient="vertical", pos_right="5%", pos_top="35%"))
)pie2 = (Pie().add("上海", [list(z) for z in zip(attrs[1], v[1])], radius=["20%", "40%"], center=["70%", "27%"],).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")).set_global_opts(title_opts=opts.TitleOpts(title="上海", pos_left='67%', pos_top='25%'),legend_opts=opts.LegendOpts(is_show=False))
)pie3 = (Pie().add("广州", [list(z) for z in zip(attrs[2], v[2])], radius=["20%", "40%"], center=["30%", "77%"],).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")).set_global_opts(title_opts=opts.TitleOpts(title="广州", pos_left='27%', pos_top='75%'),legend_opts=opts.LegendOpts(is_show=False))
)pie4 = (Pie().add("深圳", [list(z) for z in zip(attrs[3], v[3])], radius=["20%", "40%"], center=["70%", "77%"],).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")).set_global_opts(title_opts=opts.TitleOpts(title="深圳", pos_left='67%', pos_top='75%'),legend_opts=opts.LegendOpts(is_show=False))
)# 创建 Grid 并添加饼图
grid = (Grid().add(pie1, grid_opts=opts.GridOpts(pos_left="5%", pos_right="50%", pos_top="10%")).add(pie2, grid_opts=opts.GridOpts(pos_left="55%", pos_right="5%", pos_top="10%")).add(pie3, grid_opts=opts.GridOpts(pos_left="5%", pos_right="50%", pos_top="50%")).add(pie4, grid_opts=opts.GridOpts(pos_left="55%", pos_right="5%", pos_top="50%"))
)grid.render('./2018年北上广深全年空气质量情况.html')

结果如下:

相关文章:

基于Python的北京天气数据可视化分析

项目用到库 import numpy as np import pandas as pd import datetime from pyecharts.charts import Line from pyecharts.charts import Boxplot from pyecharts.charts import Pie,Grid from pyecharts import options as opts from pyecharts.charts import Calendar 1.2…...

Linux编译器-gcc或g++的使用

一.安装gcc/g 在linux中是不会自带gcc/g的,我们需要编译程序就自己需要安装gcc/g。 很简单我们使用简单的命令安装gcc:sudo yum install -y gcc。 g安装:sudo yum install -y gcc-c。 我们知道Windows上区分文件,都是使用文件…...

一条sql的执行流程

文章地址 https://blog.csdn.net/qq_43618881/article/details/118657040 连接器 请求先走到连接器,与客户端建立连接、获取权限、维持和管理连接 mysql缓存池 如果要查找的数据直接在mysql缓存池里面就直接返回数据 分析器 请求已经建立了连接,现在…...

Android音乐播放器的思路处理

** 1.android音乐播放播放列表中下一首上一首随机播放的思路 ** 实现 Android 音乐播放器的播放列表中的下一首、上一首和随机播放功能涉及到对音乐列表的管理以及对播放顺序的控制。以下是实现这些功能的思路: 下一首和上一首功能: 维护一个音乐列表…...

算法课程笔记——可撤销并查集

算法课程笔记——可撤销并查集 Gv...

【排序算法】快速排序

一、定义: 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法(也叫Hoare排序),是一种基于分治的排序方。其基本原理是将待排序的数组通过一趟排序分成两个独立的部分,其中一部分的所有数据比另一部分的所有数…...

OS复习笔记ch7-2

页式管理 学过计组的同学都了解一点页式管理,就是将内存划分成较小的、大小固定的、等大的块。现在OS引入了进程的概念,那么为了匹配内存的分块,同样把进程也划分成同样大小的块。 这里区分两个概念 The chunks of a process are called p…...

4.通用编程概念

目录 一、变量与常量1.1 变量1.2 常量 二、遮蔽三、数据类型3.1 标量类型1. 整型2. 浮点型3. 布尔类型4.字符类型 3.2 复合类型1. 元组2. 数组 四、函数五、语句和表达式六、函数的返回值 一、变量与常量 1.1 变量 在Rust中默认的变量是不可变的,如果修改其值会导致…...

iBeacon赋能AR导航:室内定位技术的原理与优势

室内定位导航对于大型商场、机场、医院等复杂室内环境至关重要,它帮助人们快速找到目的地,提高空间利用率。AR技术通过将虚拟信息叠加在现实世界,提供直观导航指引,正在成为室内导航的新趋势,增强用户互动体验&#xf…...

【sklearn】【逻辑回归1】

学习笔记来自: 所用的库和版本大家参考: Python 3.7.1Scikit-learn 0.20.1 Numpy 1.15.4, Pandas 0.23.4, Matplotlib 3.0.2, SciPy 1.1.0 1 概述 1.1 名为“回归”的分类器 在过去的四周中,我们接触了不少带“回归”二字的算法&#xf…...

java(kotlin)和 python 通过DoubleCloud的kafka进行线程间通信

进入 DoubleCloud https://www.double.cloud 创建一个kafka 1 选择语言 2 运行curl 的url命令启动一个topic 3 生成对应语言的token 4 复制3中的配置文件到本地,命名为client.properties 5 复制客户端代码 对python和java客户端代码进行了重写,java改成…...

vivado DIAGRAM、HW_AXI

图表 描述 块设计(.bd)是在IP中创建的互连IP核的复杂系统 Vivado设计套件的集成商。Vivado IP集成器可让您创建复杂的 通过实例化和互连Vivado IP目录中的IP进行系统设计。一块 设计是一种分层设计,可以写入磁盘上的文件(.bd&…...

学习分享-为什么把后台的用户验证和认证逻辑放到网关

将后台的用户验证和认证逻辑放到网关(API Gateway)中是一种常见的设计模式,这种做法在微服务架构和现代应用中有许多优势和理由: 1. 集中管理认证和授权 统一的安全策略 在一个包含多个微服务的系统中,如果每个服务…...

27 ssh+scp+nfs+yum进阶

ssh远程管理 ssh是一种安全通道协议,用来实现字符界面的远程登录。远程复制,远程文本传输。 ssh对通信双方的数据进行了加密。 用户名和密码登录 密钥对认证方式(可以实现免密登录) ssh 22 网络层 传输层 数据传输的过程中是…...

LabVIEW液压伺服压力机控制系统与控制频率选择

液压伺服压力机的控制频率是一个重要的参数,它直接影响系统的响应速度、稳定性和控制精度。具体选择的控制频率取决于多种因素,包括系统的动态特性、控制目标、硬件性能以及应用场景。以下是一些常见的指导原则和考量因素: 常见的控制频率范…...

阿里云(域名解析) certbot 证书配置

1、安装 certbot ubuntu 系统: sudo apt install certbot 2、申请certbot 域名证书,如申请二级域名aa.example.com 的ssl证书,同时需要让 bb.aa.example.com 也可以使用此证书 1、命令:sudo certbot certonly -d “域名” -d “…...

Web LLM 攻击技术

概述 在ChatGPT问世以来,我也尝试挖掘过ChatGPT的漏洞,不过仅仅发现过一些小问题:无法显示xml的bug和错误信息泄露,虽然也挖到过一些开源LLM的漏洞,比如前段时间发现的Jan的漏洞,但是不得不说传统漏洞越来…...

Java等待异步线程池跑完再执行指定方法的三种方式(condition、CountDownLatch、CyclicBarrier)

Java等待异步线程池跑完再执行指定方法的三种方式(condition、CountDownLatch、CyclicBarrier) Async如何使用 使用Async标注在方法上,可以使该方法异步的调用执行。而所有异步方法的实际执行是交给TaskExecutor的。 1.启动类添加EnableAsync注解 2. 方法上添加A…...

秒杀优化+秒杀安全

1.Redis预减库存 1.OrderServiceImpl.java 问题分析 2.具体实现 SeckillController.java 1.实现InitializingBean接口的afterPropertiesSet方法,在bean初始化之后将库存信息加载到Redis /*** 系统初始化,将秒杀商品库存加载到redis中** throws Excepti…...

48、Flink 的 Data Source API 详解

a)概述 本节将描述 FLIP-27 中引入的新 Source API 的主要接口。 b)Source Source API 是一个工厂模式的接口,用于创建以下组件。 Split EnumeratorSource ReaderSplit SerializerEnumerator Checkpoint Serializer 此外,Sou…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子&#xff08…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

2023赣州旅游投资集团

单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) ​遍历字符串​:通过外层循环逐一检查每个字符。​遇到 ? 时处理​: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: ​与…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...