基于Python的北京天气数据可视化分析
项目用到库
import numpy as np
import pandas as pd
import datetime
from pyecharts.charts import Line
from pyecharts.charts import Boxplot
from pyecharts.charts import Pie,Grid
from pyecharts import options as opts
from pyecharts.charts import Calendar
1.2018 年北京AQI全年走势图
代码如下:
# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')
attr = df['Date'].tolist() # 将 Date 转换为列表
v1 = df['AQI'].tolist() # 将 AQI 转换为列表# 创建折线图
line = (Line().add_xaxis(attr).add_yaxis("AQI值:", v1, is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.3, color="#000"), markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),opts.MarkPointItem(type_="min", name="最小值")])).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京AQI全年走势图", pos_top='5%', pos_left='center'),xaxis_opts=opts.AxisOpts(type_="category"),yaxis_opts=opts.AxisOpts(type_="value"))
)# 将图表渲染到 HTML 文件
line.render("./2018年北京AQI全年走势图.html")
结果如下:
2.2018 年北京PM2.5全年走势图
代码如下:
# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')
attr = df['Date'].tolist() # 将 Date 转换为列表
v1 = df['PM'].tolist() # 将 PM 转换为列表# 创建折线图
line = (Line().add_xaxis(attr).add_yaxis("PM2.5值:", v1, is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.3, color="#000"), markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),opts.MarkPointItem(type_="min", name="最小值")])).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京PM2.5全年走势图", pos_top='5%', pos_left='center'),xaxis_opts=opts.AxisOpts(type_="category"),yaxis_opts=opts.AxisOpts(type_="value"))
)# 将图表渲染到 HTML 文件
line.render("./2018年北京PM2.5全年走势图.html")
结果如下:
3.2018 年北京月均AQI走势图
代码如下:
# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')# 提取 Date 和 AQI 的值
dom = df[['Date', 'AQI']]# 提取月份
df['month'] = df['Date'].apply(lambda x: x.split('/')[1])# 根据月份分组并计算每月的 AQI 平均值
month_com = df.groupby('month')['AQI'].mean().reset_index()# 排序月份
month_com = month_com.sort_values(by='month')# 构造月份标签
attr = ["{}月".format(i) for i in range(1, 13)]# 获取每月的 AQI 平均值
v1 = month_com['AQI'].tolist()
v1 = ["{}".format(int(i)) for i in v1]# 创建折线图
line = (Line().add_xaxis(attr).add_yaxis("AQI月均值", v1, markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),opts.MarkPointItem(type_="min", name="最小值")])).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京月均AQI走势图", pos_top='5%', pos_left='center'),xaxis_opts=opts.AxisOpts(type_="category"),yaxis_opts=opts.AxisOpts(type_="value"))
)# 渲染图表到 HTML 文件
line.render("./2018年北京月均AQI走势图.html")
结果如下:
4.2018 年北京月均PM2.5走势图
代码如下:
# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')# 提取 Date 和 PM 的值
dom = df[['Date', 'PM']]# 提取月份
df['month'] = df['Date'].apply(lambda x: x.split('/')[1])# 根据月份分组并计算每月的 PM 平均值
month_com = df.groupby('month')['PM'].mean().reset_index()# 排序月份
month_com = month_com.sort_values(by='month')# 构造月份标签
attr = ["{}月".format(i) for i in range(1, 13)]# 获取每月的 PM 平均值
v1 = month_com['PM'].tolist()
v1 = ["{}".format(int(i)) for i in v1]# 创建折线图
line = (Line().add_xaxis(attr).add_yaxis("PM2.5月均值", v1, markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),opts.MarkPointItem(type_="min", name="最小值")])).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京月均PM2.5走势图", pos_top='5%', pos_left='center'),xaxis_opts=opts.AxisOpts(type_="category"),yaxis_opts=opts.AxisOpts(type_="value"))
)# 渲染图表到 HTML 文件
line.render("./2018年北京月均PM2.5走势图.html")
结果如下:
5.2018年北京季度AQI箱形图
代码如下:
# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')# 提取 Date 和 AQI 的值
dom = df[['Date', 'AQI']]
data = [[], [], [], []]
dom1, dom2, dom3, dom4 = data# 根据季度提取 AQI 值
for date, aqi in zip(dom['Date'], dom['AQI']):month = int(date.split('/')[1])if month in [1, 2, 3]:dom1.append(aqi)elif month in [4, 5, 6]:dom2.append(aqi)elif month in [7, 8, 9]:dom3.append(aqi)else:dom4.append(aqi)# 创建箱形图
boxplot = Boxplot()# 设置 x 轴和 y 轴数据
x_axis = ['第一季度', '第二季度', '第三季度', '第四季度']
y_axis = [dom1, dom2, dom3, dom4]
y_axis = boxplot.prepare_data(y_axis)# 添加数据到箱形图
boxplot.add_xaxis(x_axis)
boxplot.add_yaxis("AQI", y_axis)# 设置图表全局选项
boxplot.set_global_opts(title_opts=opts.TitleOpts(title="2018年北京季度AQI箱形图", pos_left='center', pos_top='6%'))# 渲染图表到 HTML 文件
boxplot.render("./2018年北京季度AQI箱形图.html")
结果如下:
6.2018年北京季度PM2.5箱形图
代码如下:
# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')# 提取 Date 和 PM 的值
dom = df[['Date', 'PM']]
data = [[], [], [], []]
dom1, dom2, dom3, dom4 = data# 根据季度提取 PM 值
for date, pm in zip(dom['Date'], dom['PM']):month = int(date.split('/')[1])if month in [1, 2, 3]:dom1.append(pm)elif month in [4, 5, 6]:dom2.append(pm)elif month in [7, 8, 9]:dom3.append(pm)else:dom4.append(pm)# 创建箱形图
boxplot = Boxplot()# 设置 x 轴和 y 轴数据
x_axis = ['第一季度', '第二季度', '第三季度', '第四季度']
y_axis = [dom1, dom2, dom3, dom4]
y_axis = boxplot.prepare_data(y_axis)# 添加数据到箱形图
boxplot.add_xaxis(x_axis)
boxplot.add_yaxis("PM2.5", y_axis)# 设置图表全局选项
boxplot.set_global_opts(title_opts=opts.TitleOpts(title="2018年北京季度PM2.5箱形图", pos_left='center', pos_top='6%'))# 渲染图表到 HTML 文件
boxplot.render("./2018年北京季度PM2.5箱形图.html")
结果如下:
7.2018年北京全年空气质量情况
代码如下:
# 读取数据
df = pd.read_csv('beijing_AQI_2018.csv')# 根据 Quality_grade 分组
rank_message = df.groupby(['Quality_grade'])# 计算每个 Quality_grade 的频数
rank_com = rank_message['Quality_grade'].agg(['count'])
rank_com.reset_index(inplace=True) # 重置索引
rank_com_last = rank_com.sort_values('count', ascending=False) # 从大到小排序# 提取 Quality_grade 和对应的频数
attr = rank_com_last['Quality_grade'].tolist()
v1 = rank_com_last['count'].tolist()# 创建饼图
pie = (Pie().add("", [list(z) for z in zip(attr, v1)], radius=["40%", "75%"], label_opts=opts.LabelOpts(is_show=True, formatter="{b}: {d}%")).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京全年空气质量情况", pos_left='center', pos_top='0'),legend_opts=opts.LegendOpts(is_show=True, orient="vertical", pos_left="left", pos_top="10%"))
)# 渲染图表到 HTML 文件
pie.render('./2018年北京全年空气质量情况.html')
结果如下:
8.2018年北京PM2.5指数日历图
代码如下:
# Read data from 'beijing_AQI_2018.csv'
df = pd.read_csv('beijing_AQI_2018.csv')# Extract 'Date' and 'PM' columns
dom = df[['Date', 'PM']]list1 = []# Compress the date and PM values into a list of lists
for i, j in zip(dom['Date'], dom['PM']):time_list = i.split('/')time = datetime.date(int(time_list[0]), int(time_list[1]), int(time_list[2]))PM = int(j)list1.append([str(time), PM])# Create a calendar chart
calendar = (Calendar(init_opts=opts.InitOpts(width="800px", height="400px")).add(series_name="2018年北京PM2.5指数日历图",yaxis_data=list1,calendar_opts=opts.CalendarOpts(range_="2018"),).set_global_opts(title_opts=opts.TitleOpts(title="2018年北京PM2.5指数日历图", pos_left="center",pos_top='50%'),visualmap_opts=opts.VisualMapOpts(max_=300, min_=0, orient="horizontal", is_piecewise=True,pos_top='60%', # 将视觉映射放置在图表的顶部pos_left='center' # 将视觉映射放置在图表的水平居中位置),)
)# Render the chart to an HTML file
calendar.render('./2018年北京PM2.5指数日历图.html')
结果如下:
9.2018 年北上广深AQI全年走势图
代码如下:
citys = ['beijing', 'shanghai', 'guangzhou', 'shenzhen']
cityes_AQI = []# 遍历四个城市的数据
for city in citys:filename = city + '_AQI' + '_2018.csv'aqi_data = pd.read_csv(filename)# 提取日期和AQI指数两列内容get_data = aqi_data[['Date', 'AQI']]# 获取每行数据的月份month_for_data = [j.split('/')[1] for j in get_data['Date']]aqi_data['Month'] = month_for_data# 求每个月AQI平均值month_AQI = aqi_data.groupby(['Month'])['AQI'].mean().reset_index()# 获取每个城市月均AQI的数据,转化为int数据类型city_AQI_data_int = month_AQI['AQI'].astype(int).tolist()cityes_AQI.append(city_AQI_data_int)months = [str(i) + '月' for i in range(1, 13)]line = (Line(init_opts=opts.InitOpts(width="800px", height="400px")).add_xaxis(months).add_yaxis("北京", cityes_AQI[0], color='red', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("上海", cityes_AQI[1], color='purple', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("广州", cityes_AQI[2], color='blue', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("深圳", cityes_AQI[3], color='orange', label_opts=opts.LabelOpts(is_show=False)).set_global_opts(title_opts=opts.TitleOpts(title="2018年北上广深AQI全年走势图", pos_left='center', pos_top='0'),legend_opts=opts.LegendOpts(orient="horizontal", pos_top="8%"),)
)line.render('./2018年北上广深AQI全年走势图.html') # 生成HTML文件,保存在当前目录下
结果如下:
10.2018 年北上广深PM2.5全年走势图
代码如下:
import numpy as np
import pandas as pd
from pyecharts.charts import Line
from pyecharts import options as optscitys = ['beijing', 'shanghai', 'guangzhou', 'shenzhen']
cityes_AQI = []# 遍历四个城市的数据
for city in citys:filename = city + '_AQI' + '_2018.csv'aqi_data = pd.read_csv(filename)# 提取日期和PM2.5指数两列内容get_data = aqi_data[['Date', 'PM']]# 获取每行数据的月份month_for_data = [j.split('/')[1] for j in get_data['Date']]aqi_data['Month'] = month_for_data# 求每个月PM2.5平均值month_AQI = aqi_data.groupby(['Month'])['PM'].mean().reset_index()# 获取每个城市月均PM2.5的数据,转化为int数据类型city_AQI_data_int = month_AQI['PM'].astype(int).tolist()cityes_AQI.append(city_AQI_data_int)months = [str(i) + '月' for i in range(1, 13)]line = (Line(init_opts=opts.InitOpts(width="800px", height="400px")).add_xaxis(months).add_yaxis("北京", cityes_AQI[0], color='red', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("上海", cityes_AQI[1], color='purple', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("广州", cityes_AQI[2], color='blue', label_opts=opts.LabelOpts(is_show=False)).add_yaxis("深圳", cityes_AQI[3], color='orange', label_opts=opts.LabelOpts(is_show=False)).set_global_opts(title_opts=opts.TitleOpts(title="2018年北上广深PM2.5全年走势图", pos_left='center', pos_top='0'),legend_opts=opts.LegendOpts(orient="horizontal", pos_top="8%"),)
)line.render('./2018年北上广深PM2.5全年走势图.html') # 生成HTML文件,保存在当前目录下
结果如下:
11.2018 年北上广深全年空气质量情况
代码如下:
citys = ['beijing', 'shanghai', 'guangzhou', 'shenzhen']
v = []
attrs = []
for i in range(4):filename = citys[i] + '_AQI' + '_2018.csv'df = pd.read_csv(filename)# 根据 Quality_grade 分组Quality_grade_message = df.groupby(['Quality_grade'])# 每组的频数Quality_grade_com = Quality_grade_message['Quality_grade'].agg(['count'])Quality_grade_com.reset_index(inplace=True)Quality_grade_com_last = Quality_grade_com.sort_values('count', ascending=False)# 取 Quality_grade 的值Quality_grade_array = Quality_grade_com_last['Quality_grade'].values.tolist()attrs.append(Quality_grade_array)Quality_grade_count = Quality_grade_com_last['count'].values.tolist()v.append(Quality_grade_count)# 创建饼图并设置属性
pie1 = (Pie().add("北京", [list(z) for z in zip(attrs[0], v[0])], radius=["20%", "40%"], center=["30%", "27%"],).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")).set_global_opts(title_opts=opts.TitleOpts(title="北京", pos_left='27%', pos_top='25%'),legend_opts=opts.LegendOpts(orient="vertical", pos_right="5%", pos_top="35%"))
)pie2 = (Pie().add("上海", [list(z) for z in zip(attrs[1], v[1])], radius=["20%", "40%"], center=["70%", "27%"],).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")).set_global_opts(title_opts=opts.TitleOpts(title="上海", pos_left='67%', pos_top='25%'),legend_opts=opts.LegendOpts(is_show=False))
)pie3 = (Pie().add("广州", [list(z) for z in zip(attrs[2], v[2])], radius=["20%", "40%"], center=["30%", "77%"],).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")).set_global_opts(title_opts=opts.TitleOpts(title="广州", pos_left='27%', pos_top='75%'),legend_opts=opts.LegendOpts(is_show=False))
)pie4 = (Pie().add("深圳", [list(z) for z in zip(attrs[3], v[3])], radius=["20%", "40%"], center=["70%", "77%"],).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")).set_global_opts(title_opts=opts.TitleOpts(title="深圳", pos_left='67%', pos_top='75%'),legend_opts=opts.LegendOpts(is_show=False))
)# 创建 Grid 并添加饼图
grid = (Grid().add(pie1, grid_opts=opts.GridOpts(pos_left="5%", pos_right="50%", pos_top="10%")).add(pie2, grid_opts=opts.GridOpts(pos_left="55%", pos_right="5%", pos_top="10%")).add(pie3, grid_opts=opts.GridOpts(pos_left="5%", pos_right="50%", pos_top="50%")).add(pie4, grid_opts=opts.GridOpts(pos_left="55%", pos_right="5%", pos_top="50%"))
)grid.render('./2018年北上广深全年空气质量情况.html')
结果如下:
相关文章:
基于Python的北京天气数据可视化分析
项目用到库 import numpy as np import pandas as pd import datetime from pyecharts.charts import Line from pyecharts.charts import Boxplot from pyecharts.charts import Pie,Grid from pyecharts import options as opts from pyecharts.charts import Calendar 1.2…...
Linux编译器-gcc或g++的使用
一.安装gcc/g 在linux中是不会自带gcc/g的,我们需要编译程序就自己需要安装gcc/g。 很简单我们使用简单的命令安装gcc:sudo yum install -y gcc。 g安装:sudo yum install -y gcc-c。 我们知道Windows上区分文件,都是使用文件…...
一条sql的执行流程
文章地址 https://blog.csdn.net/qq_43618881/article/details/118657040 连接器 请求先走到连接器,与客户端建立连接、获取权限、维持和管理连接 mysql缓存池 如果要查找的数据直接在mysql缓存池里面就直接返回数据 分析器 请求已经建立了连接,现在…...
Android音乐播放器的思路处理
** 1.android音乐播放播放列表中下一首上一首随机播放的思路 ** 实现 Android 音乐播放器的播放列表中的下一首、上一首和随机播放功能涉及到对音乐列表的管理以及对播放顺序的控制。以下是实现这些功能的思路: 下一首和上一首功能: 维护一个音乐列表…...
算法课程笔记——可撤销并查集
算法课程笔记——可撤销并查集 Gv...
【排序算法】快速排序
一、定义: 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法(也叫Hoare排序),是一种基于分治的排序方。其基本原理是将待排序的数组通过一趟排序分成两个独立的部分,其中一部分的所有数据比另一部分的所有数…...
OS复习笔记ch7-2
页式管理 学过计组的同学都了解一点页式管理,就是将内存划分成较小的、大小固定的、等大的块。现在OS引入了进程的概念,那么为了匹配内存的分块,同样把进程也划分成同样大小的块。 这里区分两个概念 The chunks of a process are called p…...
4.通用编程概念
目录 一、变量与常量1.1 变量1.2 常量 二、遮蔽三、数据类型3.1 标量类型1. 整型2. 浮点型3. 布尔类型4.字符类型 3.2 复合类型1. 元组2. 数组 四、函数五、语句和表达式六、函数的返回值 一、变量与常量 1.1 变量 在Rust中默认的变量是不可变的,如果修改其值会导致…...
iBeacon赋能AR导航:室内定位技术的原理与优势
室内定位导航对于大型商场、机场、医院等复杂室内环境至关重要,它帮助人们快速找到目的地,提高空间利用率。AR技术通过将虚拟信息叠加在现实世界,提供直观导航指引,正在成为室内导航的新趋势,增强用户互动体验…...
【sklearn】【逻辑回归1】
学习笔记来自: 所用的库和版本大家参考: Python 3.7.1Scikit-learn 0.20.1 Numpy 1.15.4, Pandas 0.23.4, Matplotlib 3.0.2, SciPy 1.1.0 1 概述 1.1 名为“回归”的分类器 在过去的四周中,我们接触了不少带“回归”二字的算法…...
java(kotlin)和 python 通过DoubleCloud的kafka进行线程间通信
进入 DoubleCloud https://www.double.cloud 创建一个kafka 1 选择语言 2 运行curl 的url命令启动一个topic 3 生成对应语言的token 4 复制3中的配置文件到本地,命名为client.properties 5 复制客户端代码 对python和java客户端代码进行了重写,java改成…...
vivado DIAGRAM、HW_AXI
图表 描述 块设计(.bd)是在IP中创建的互连IP核的复杂系统 Vivado设计套件的集成商。Vivado IP集成器可让您创建复杂的 通过实例化和互连Vivado IP目录中的IP进行系统设计。一块 设计是一种分层设计,可以写入磁盘上的文件(.bd&…...
学习分享-为什么把后台的用户验证和认证逻辑放到网关
将后台的用户验证和认证逻辑放到网关(API Gateway)中是一种常见的设计模式,这种做法在微服务架构和现代应用中有许多优势和理由: 1. 集中管理认证和授权 统一的安全策略 在一个包含多个微服务的系统中,如果每个服务…...
27 ssh+scp+nfs+yum进阶
ssh远程管理 ssh是一种安全通道协议,用来实现字符界面的远程登录。远程复制,远程文本传输。 ssh对通信双方的数据进行了加密。 用户名和密码登录 密钥对认证方式(可以实现免密登录) ssh 22 网络层 传输层 数据传输的过程中是…...
LabVIEW液压伺服压力机控制系统与控制频率选择
液压伺服压力机的控制频率是一个重要的参数,它直接影响系统的响应速度、稳定性和控制精度。具体选择的控制频率取决于多种因素,包括系统的动态特性、控制目标、硬件性能以及应用场景。以下是一些常见的指导原则和考量因素: 常见的控制频率范…...
阿里云(域名解析) certbot 证书配置
1、安装 certbot ubuntu 系统: sudo apt install certbot 2、申请certbot 域名证书,如申请二级域名aa.example.com 的ssl证书,同时需要让 bb.aa.example.com 也可以使用此证书 1、命令:sudo certbot certonly -d “域名” -d “…...
Web LLM 攻击技术
概述 在ChatGPT问世以来,我也尝试挖掘过ChatGPT的漏洞,不过仅仅发现过一些小问题:无法显示xml的bug和错误信息泄露,虽然也挖到过一些开源LLM的漏洞,比如前段时间发现的Jan的漏洞,但是不得不说传统漏洞越来…...
Java等待异步线程池跑完再执行指定方法的三种方式(condition、CountDownLatch、CyclicBarrier)
Java等待异步线程池跑完再执行指定方法的三种方式(condition、CountDownLatch、CyclicBarrier) Async如何使用 使用Async标注在方法上,可以使该方法异步的调用执行。而所有异步方法的实际执行是交给TaskExecutor的。 1.启动类添加EnableAsync注解 2. 方法上添加A…...
秒杀优化+秒杀安全
1.Redis预减库存 1.OrderServiceImpl.java 问题分析 2.具体实现 SeckillController.java 1.实现InitializingBean接口的afterPropertiesSet方法,在bean初始化之后将库存信息加载到Redis /*** 系统初始化,将秒杀商品库存加载到redis中** throws Excepti…...
48、Flink 的 Data Source API 详解
a)概述 本节将描述 FLIP-27 中引入的新 Source API 的主要接口。 b)Source Source API 是一个工厂模式的接口,用于创建以下组件。 Split EnumeratorSource ReaderSplit SerializerEnumerator Checkpoint Serializer 此外,Sou…...
深入解析Java扩展机制:SPI与Spring.factories
目录 Java SPI概述 1.1 什么是SPI?1.2 SPI的工作原理1.3 SPI的优缺点 SPI的应用 2.1 Java标准库中的SPI应用2.2 自定义SPI示例 Spring.factories概述 3.1 什么是spring.factories?3.2 spring.factories的工作原理3.3 spring.factories的优缺点 spring.f…...
Vue2之模板语法
文章目录 1.模板语法1.1 插值语法{{}}可以写什么1.2 指令语法1.2.1 指令概述1.2.2 v-bind指令1.2.3 v-model指令 1.模板语法 1.1 插值语法{{}}可以写什么 (1)在data中声明的 (2)常量 (3)合法的JavaScript…...
java基础练习题
1、一个".java"源文件中是否可以包括多个类?有什么限制? 可以包含多个类。但是只有一个类可以声明为public,且要求声明为public的类的类名与源文件名相同。 2、java的优势? a、跨平台性 b、安全性高 c、简单性 d、…...
unity中通过实现底层接口实现非按钮(图片)的事件监听
编写监听脚本 PEListenter 继承自MonoBehaviour类,并实现了IPointerDownHandler、IPointerUpHandler和IDragHandler接口,按照需求定义需要接收事件(鼠标按下、抬起、拖拽)的回调函数 //监听类(需要挂载在物体上面&am…...
重庆耶非凡科技有限公司的选品师项目加盟靠谱吗?
在当今电子商务的浪潮中,选品师的角色愈发重要。而重庆耶非凡科技有限公司以其独特的选品师项目,在行业内引起了广泛关注。对于想要加盟该项目的人来说,项目的靠谱性无疑是首要考虑的问题。 首先,我们来看看耶非凡科技有限公司的背…...
《青少年编程与数学》课程方案:4、课程策略
《青少年编程与数学》课程方案:4、课程策略 一、工程师思维二、使命感驱动三、价值观引领四、学习现代化五、工作生活化六、与时代共进 《青少年编程与数学》课程策略强调采用工程师思维,避免重复造轮子,培养使命感,通过探索兴趣、…...
用爬虫实现---模拟填志愿
先来说实现逻辑,首先我要获取到这个网站上所有的信息,那么我们就可以开始对元素进行检查 我们发现他的每一个学校信息都有一个对应的属性,并且是相同的,那么我们就可以遍历这个网页中的所有属性一样的开始爬取 在来分析࿰…...
vscode Run Code输出出现中文乱码情况问题解决方案
主要解决方案是通过修改计算机默认的编码格式,来完成的。 chcp 是 Windows 操作系统中的一个命令,用于显示或设置控制台的代码页(code page)。代码页决定了控制台如何解释和显示字符,特别是非 ASCII 字符(例如 Unicode 字符)。 使用方法 显示当前代码页: 输入 chcp 而…...
代码随想录训练营Day30
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、重新安排行程 前言 提示:这里可以添加本文要记录的大概内容: 今天是跟着代码随想录刷题的第30天,主要是复习了回溯算法…...
Swift 序列(Sequence)排序面面俱到 - 从过去到现在(二)
概览 在上篇 Swift 序列(Sequence)排序面面俱到 - 从过去到现在(一)博文中,我们讨论了 Swift 语言中序列和集合元素排序的一些基本知识,我们还给出了以自定义类型中任意属性排序的“康庄大道”。 不过在实际的撸码场景中,我们往往需要的是“多属性”同时参与到排序的考…...
云南网站建设优选平台/长沙seo关键词
1 .责任分配矩阵展示项目资源在各个()中的任务分配? A.工作包 B.项目活动 4 .在虚拟团队环境中,()规划变得日益重要? A.资源 B.沟通 参考答案 A B...
网站制作费用/百度发布平台官网
发现这不是一个省力的活。如果你的MySQL版本是5.1.7之后,并且是5.1.23之前,有一种简单的方法可以用:RENAME {DATABASE | SCHEMA} db_name TO new_db_name;但这种方法并不可靠,可能会造成数据的丢失,不建议使用。对此官…...
做网站客户最关心哪些问题/搜索引擎成功案例分析
704. 二分查找 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。 class Solution { public:int search(vector<int>&…...
专业网站推广服务咨询/吉林百度查关键词排名
匿名函数与> > expr 等同于{ return expr; }匿名函数的参照如下:([[Type] param1[, …]]) { codeBlock; };例子: (context) > HomePage(widget.isDark, themeChanger)上面的语句翻译过来就是: function_name(context) {return Ho…...
镇江网站建设推广/正在直播足球比赛
Java如何实现验证码验证功能呢?日常生活中,验证码随处可见,他可以在一定程度上保护账号安全,那么他是怎么实现的呢?Java实现验证码验证功能其实非常简单:用到了一个Graphics类在画板上绘制字母,…...
校园网站怎么做/新闻头条新闻
Pausing Coyote HTTP/1.1 on http-8080 tomcat启动出现这个错误的时候。 其实找到占用8080端口的进程 然后干掉他,重新启动tomcat就OK了!...