当前位置: 首页 > news >正文

R语言数据探索和分析23-公共物品问卷分析

第一次实验使用最基本的公共物品游戏,不外加其他的treatment。班里的学生4人一组,一共44/4=11组。一共玩20个回合的公共物品游戏。每回合给15秒做决定的时间。第十回合后,给大家放一个几分钟的“爱心”视频(链接如下),然后继续完成剩下的10回合。

修改列名

把“来源”,“来源详情”,“来自IP” 这几个无关变量删除。重新命名前面几个变量,新变量对应名称为:'序号','提交答卷时间','所用时间','性别'。把代表组号的那一个变量的名字重新命名为“team_num”。把后面所有回合的变量名重新命名为“round1”, round2,....round20。以及最后两个测算风险偏好和模糊偏好的变量分别重新命名为risk_atti 和 ambiguity_atti。

数据和完整代码

# 读取数据
data <- read.csv("datar.csv", header = TRUE, stringsAsFactors = FALSE, fileEncoding = "GBK")
datahead(data,5)# 删除无关变量
data <- data[, !names(data) %in% c("来源", "来源详情", "来自IP")]# 重新命名变量
colnames(data) <- c("序号", "提交答卷时间", "所用时间", "性别", "team_num", paste0("round", 1:20), "risk_atti", "ambiguity_atti")names(data)
head(data,5)

变量赋值

data$gender <- ifelse(data$性别 == "男", 1, 0)
head(data,5)

看“爱心”视频前,大家前10回合的平均贡献值是多少?看“爱心”视频后,大家后10回合的平均贡献值是多少?

# 提取前10回合和后10回合的数据
before_video <- data[, 7:16]
after_video <- data[, 17:26]# 计算平均贡献值
avg_contribution_before <- rowMeans(before_video, na.rm = TRUE)
avg_contribution_after <- rowMeans(after_video, na.rm = TRUE)# 输出结果
avg_contribution_before <- mean(avg_contribution_before, na.rm = TRUE)
avg_contribution_after <- mean(avg_contribution_after, na.rm = TRUE)cat("看“爱心”视频前,大家前10回合的平均贡献值是:", avg_contribution_before, "\n")
cat("看“爱心”视频后,大家后10回合的平均贡献值是:", avg_contribution_after, "\n")
# 导入绘图库
library(ggplot2)# 创建数据框
contribution <- data.frame(Time_Period = c("Before Video", "After Video"),Average_Contribution = c(avg_contribution_before, avg_contribution_after)
)# 绘制柱状图,并标上数据值
ggplot(contribution, aes(x = Time_Period, y = Average_Contribution, fill = Time_Period)) +geom_bar(stat = "identity") +geom_text(aes(label = round(Average_Contribution, 2)), vjust = -0.5) +  # 标上数据值labs(title = "Average Contribution Before and After Watching 'Love' Video",x = "Time Period",y = "Average Contribution") +theme_minimal() +theme(legend.position = "none")

从结果和可视化都可以看出,看“爱心”视频前,大家前10回合的平均贡献值是7.138889,看“爱心”视频后,大家后10回合的平均贡献值是7.2

异常值检测

# 找出所用时间超过800秒的同学
outliers_800 <- data[data$'所用时间' == '808秒', ]
outliers_800
# 找出所用时间为314秒的同学
outliers_314 <- data[data$'所用时间' == '314秒', ]
# 找出所用时间为74秒的同学
outliers_74 <- data[data$'所用时间' == '74秒', ]
# 将outliers合并
outliers <- rbind(outliers_800, outliers_314, outliers_74)
outliers 
# 从数据中删除outliers
data <- data[!(rownames(data) %in% rownames(outliers)), ]# 重新计算Part 1
before_video <- data[, 7:16]
after_video <- data[, 17:26]avg_contribution_before <- rowMeans(before_video, na.rm = TRUE)
avg_contribution_after <- rowMeans(after_video, na.rm = TRUE)avg_contribution_before <- mean(avg_contribution_before, na.rm = TRUE)
avg_contribution_after <- mean(avg_contribution_after, na.rm = TRUE)

删除了异常值之后,看“爱心”视频前,大家前10回合的平均贡献值是6.751515,看“爱心”视频后,大家后10回合的平均贡献值是7.490909

女同学的前十和后十回合的平均贡献值是多少?男生呢?

# 按性别分组
female_data <- subset(data, 性别 == "女")
male_data <- subset(data, 性别 == "男")# 提取前十回合和后十回合的数据
before_video_female <- female_data[, 7:16]
before_video_female
after_video_female <- female_data[, 17:26]
before_video_male <- male_data[, 7:16]
after_video_male <- male_data[, 17:26]# 计算平均贡献值
avg_contribution_before_female <- rowMeans(before_video_female, na.rm = TRUE)
avg_contribution_after_female <- rowMeans(after_video_female, na.rm = TRUE)
avg_contribution_before_male <- rowMeans(before_video_male, na.rm = TRUE)
avg_contribution_after_male <- rowMeans(after_video_male, na.rm = TRUE)# 计算平均贡献值的平均值
avg_contribution_before_female <- mean(avg_contribution_before_female, na.rm = TRUE)
avg_contribution_after_female <- mean(avg_contribution_after_female, na.rm = TRUE)
avg_contribution_before_male <- mean(avg_contribution_before_male, na.rm = TRUE)
avg_contribution_after_male <- mean(avg_contribution_after_male, na.rm = TRUE)

女同学的前十回合的平均贡献值是5.266667,女同学的后十回合的平均贡献值是6.3,男同学的前十回合的平均贡献值是7.308333,男同学的后十回合的平均贡献值是7.9375

为了探索不同风险偏好的同学在观看“爱心”视频前后的平均贡献值,我们可以按照之前的步骤进行数据处理和分析。首先,我们需要将风险偏好转换为风险偏好等级,然后按照这些等级将数据分组,分别计算他们在观看视频前后的平均贡献值。        

# 根据映射关系将风险偏好转换为相应的风险偏好等级
risk_attitude_levels <- c("highly risk loving", "very risk loving", "risk loving", "risk neutral", "slightly risk averse", "risk averse", "very risk averse", "highly risk averse", "stay in bed", "stay in bed")data$risk_attitude_level <- risk_attitude_levels[data$risk_atti]# 按风险偏好等级分组
risk_attitude_groups <- split(data, data$risk_attitude_level)# 计算每个组在观看视频前后的平均贡献值
avg_contribution_before <- sapply(risk_attitude_groups, function(group) {avg_before <- mean(rowMeans(group[, 7:16], na.rm = TRUE), na.rm = TRUE)return(avg_before)
})avg_contribution_after <- sapply(risk_attitude_groups, function(group) {avg_after <- mean(rowMeans(group[, 17:26], na.rm = TRUE), na.rm = TRUE)return(avg_after)
})# 合并结果为数据框
avg_contribution <- data.frame(Risk_Attitude = names(avg_contribution_before),Avg_Contribution_Before = avg_contribution_before,Avg_Contribution_After = avg_contribution_after)# 输出结果
print(avg_contribution)

高风险偏好者(highly risk loving)在观看视频前的平均贡献值较高,但在观看视频后降低到较低水平,这可能表明他们更倾向于冒险和自我利益,并且对于公共物品的贡献程度受到外部因素影响较大。风险厌恶者(risk averse)在观看视频前后的平均贡献值有所增加,这可能表明他们更加稳健和谨慎,但在观看视频后表现出更多的愿意参与公共物品的贡献。风险中性者(risk neutral)在观看视频前后的平均贡献值保持相对稳定,这可能表明他们的决策相对稳定,不受外部因素的影响较大。风险略微厌恶者(slightly risk averse)和非常风险厌恶者(very risk averse)在观看视频前后的平均贡献值变化较小,这可能表明他们的行为相对稳定,不受外部因素的影响较大。保持在床上者(stay in bed)在观看视频前后的平均贡献值有所增加,这可能表明他们对于外部因素的反应较弱,但在观看视频后表现出更多的愿意参与公共物品的贡献。

综上所述,不同风险偏好等级的同学在观看视频前后的行为表现有所不同,这可能受到个体风险态度和外部环境的影响。针对这些不同特点,我们可以制定更具针对性的鼓励措施,以促进更多人为公共物品做出贡献。

创作不易,希望大家多点赞关注评论!!!

相关文章:

R语言数据探索和分析23-公共物品问卷分析

第一次实验使用最基本的公共物品游戏&#xff0c;不外加其他的treatment。班里的学生4人一组&#xff0c;一共44/411组。一共玩20个回合的公共物品游戏。每回合给15秒做决定的时间。第十回合后&#xff0c;给大家放一个几分钟的“爱心”视频&#xff08;链接如下&#xff09;&a…...

Webix前端界面框架:深度解析与应用实践

Webix前端界面框架&#xff1a;深度解析与应用实践 Webix&#xff0c;作为一款功能强大的前端界面框架&#xff0c;近年来在开发社区中逐渐崭露头角。本文将从四个方面、五个方面、六个方面和七个方面&#xff0c;深入剖析Webix的特性、优势、应用实践以及面临的挑战&#xff…...

Qt基于SQLite数据库的增删查改demo

一、效果展示 在Qt创建如图UI界面&#xff0c;主要包括“查询”、“添加”、“删除”、“更新”&#xff0c;四个功能模块。 查询&#xff1a;从数据库中查找所有数据的所有内容&#xff0c;并显示在左边的QListWidget控件上。 添加&#xff1a;在右边的QLineEdit标签上输入需…...

新书推荐:2.2.4 第11练:消息循环

/*------------------------------------------------------------------------ 011 编程达人win32 API每日一练 第11个例子GetMessage.c&#xff1a;消息循环 MSG结构 GetMessage函数 TranslateMessage函数&#xff1a;将虚拟键消息转换为字符消息 DispatchMessage函数…...

MASA:匹配一切、分割一切、跟踪一切

文章目录 摘要1、引言2、相关工作2.1、学习实例级关联2.2、Segment and Track Anything 模型 3、方法3.1、预备知识&#xff1a;SAM3.2、通过分割任何事物来匹配任何事物3.2.1、MASA流程3.2.2、MASA适配器3.2.3、推理 4、实验4.1、实验设置4.2、与最先进技术的比较4.3、消融研究…...

Websocket前端传参:深度解析与实战应用

Websocket前端传参&#xff1a;深度解析与实战应用 在现代Web开发中&#xff0c;Websocket作为一种双向通信协议&#xff0c;已经广泛应用于实时数据传输场景。前端传参作为Websocket通信的重要组成部分&#xff0c;其正确性和高效性直接影响到应用的性能和用户体验。本文将深…...

造假高手——faker

在测试写好的代码时通常需要用到一些测试数据&#xff0c;大量的真实数据有时候很难获取&#xff0c;如果手动制造测试数据又过于繁重无聊&#xff0c;显得不够优雅&#xff0c;今天我们介绍的faker这个轮子可以完美的解决这个问题。faker是一个用于生成各种类型假数据的库&…...

前端工程化工具系列(十二)—— PostCSS(v8.4.38):CSS 转换工具

PostCSS 是转换 CSS 语法的工具。它提供 API 来对 CSS 文件进行分析和修改它的规则。 PostCSS 本身并不能直接使用&#xff0c;主要是使用基于 PostCSS 编写的插件。 1 安装 pnpm add -D postcss-import postcss-nested postcss-preset-env cssnano2 配置 在项目根目录下创…...

Scanpy(3)单细胞数据分析常规流程

单细胞数据分析常规流程 面对高效快速的要求上,使用R分析数据越来越困难,转战Python分析,我们通过scanpy官网去学习如何分析单细胞下游常规分析。 数据3k PBMC来自健康的志愿者,可从10x Genomics免费获得。在linux系统上,可以取消注释并运行以下操作来下载和解压缩数据。…...

【Stable Diffusion】(基础篇二)—— Stable Diffusion图形界面介绍和基本使用流程

本系列笔记主要参考B站nenly同学的视频教程&#xff0c;传送门&#xff1a;B站第一套系统的AI绘画课&#xff01;零基础学会Stable Diffusion&#xff0c;这绝对是你看过的最容易上手的AI绘画教程 | SD WebUI 保姆级攻略_哔哩哔哩_bilibili 在上一篇博客中&#xff0c;我们成功…...

OpenCv之简单的人脸识别项目(动态处理页面)

人脸识别 准备九、动态处理页面1.导入所需的包2.设置窗口2.1定义窗口外观和大小2.2设置窗口背景2.2.1设置背景图片2.2.2创建label控件 3.定义视频处理脚本4.定义相机抓取脚本5.定义关闭窗口的函数6.按钮设计6.1视频处理按钮6.2相机抓取按钮6.3返回按钮 7.定义关键函数8.动态处理…...

【Linux】进程间通信

目录 一、进程间通信概念 二、进程间通信的发展 三、进程间通信的分类 四、管道 4.1 什么是管道 4.2 匿名管道 4.2 基于匿名管道设计进程池 4.3 命名管道 4.4 用命名管道实现server&client通信 五、system V共享内存 5.1 system V共享内存的引入 5.2 共享内存的…...

UI与前端:揭秘两者的微妙差异

UI与前端&#xff1a;揭秘两者的微妙差异 在数字化时代的浪潮中&#xff0c;UI设计和前端开发已成为塑造用户体验的两大核心力量。然而&#xff0c;这两者之间究竟有何区别&#xff1f;本文将深入剖析UI设计与前端开发的四个方面、五个方面、六个方面和七个方面的差异&#xf…...

idea如何根据路径快速在项目中快速打卡该页面

在idea项目中使用快捷键shift根据路径快速找到该文件并打卡 双击shift(连续按两下shift) -粘贴文件路径-鼠标左键点击选中跳转的路径 自动进入该路径页面 例如&#xff1a;我的实例路径为src/views/user/govType.vue 输入src/views/user/govType或加vue后缀src/views/user/go…...

探索成功者的特质——俞敏洪的观点启示

在人生的舞台上&#xff0c;我们常常对成功者充满好奇与敬仰&#xff0c;试图探寻他们成功的奥秘。俞敏洪指出&#xff0c;成功者都具备七个特质&#xff0c;而这些特质与家庭背景和大学的好坏并无直接关系。让我们深入剖析这七个特质&#xff0c;或许能从中获得对我们自身成长…...

MCU的环形FIFO

fifo.h #ifndef __FIFO_H #define __FIFO_H#include "main.h"#define RINGBUFF_LEN (500) //定义最大接收字节数 500typedef struct {uint16_t Head; // 头指针 指向可读起始地址 每读一个&#xff0c;数字1uint16_t Tail; // 尾指针 指…...

使用proteus仿真51单片机的流水灯实现

proteus介绍&#xff1a; proteus是一个十分便捷的用于电路仿真的软件&#xff0c;可以用于实现电路的设计、仿真、调试等。并且可以在对应的代码编辑区域&#xff0c;使用代码实现电路功能的仿真。 汇编语言介绍&#xff1a; 百度百科介绍如下&#xff1a; 汇编语言是培养…...

【漏洞复现】Apache OFBiz 路径遍历导致RCE漏洞(CVE-2024-36104)

0x01 产品简介 Apache OFBiz是一个电子商务平台&#xff0c;用于构建大中型企业级、跨平台、跨数据库、跨应用服务器的多层、分布式电子商务类应用系统。是美国阿帕奇(Apache)基金会的一套企业资源计划(ERP)系统。该系统提供了一整套基于Java的Web应用程序组件和工具。 0x02 …...

数据库表中创建字段查询出来却为NULL?

起因&#xff1a; 今天新创建了一张表,其中一个字段命名为"word_num"带下划线&#xff0c;我在前端页面怎么也查询不出来word_num的值&#xff0c;后来在后端接口处打印了一下数据库查询出来的数据&#xff0c;发现这个字段一直为NULL&#xff0c;然后我就想到是不是…...

缓存方法返回值

1. 业务需求 前端用户查询数据时,数据查询缓慢耗费时间; 基于缓存中间件实现缓存方法返回值:实现流程用户第一次查询时在数据库查询,并将查询的返回值存储在缓存中间件中,在缓存有效期内前端用户再次查询时,从缓存中间件缓存获取 2. 基于Redis实现 参考1 2.1 简单实现 引入…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...