当前位置: 首页 > news >正文

YOLOv5改进 | 主干网络 | 将主干网络替换为轻量化的ShuffleNetv2【原理 + 完整代码】

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

目标检测是计算机视觉中一个重要的下游任务。对于边缘盒子的计算平台来说,一个大型模型很难实现实时检测的要求。基于一系列消融实验,研究者提出了几个实用的网络设计效率指导原则。据此,提出了一种新的架构,称为ShuffleNetV2。在本文中,给大家带来的教程是将原来的主干网络中的特征提取网络替换为shufflenetv2网络。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址 YOLOv5改进+入门——持续更新各种有效涨点方法 点击即可跳转

1.原理

论文地址ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design——点击即可跳转

官方代码pytorch官方代码仓库——点击即可跳转

ShuffleNetV2 是一种高效的卷积神经网络架构,旨在优化计算资源的使用,尤其适用于移动设备和嵌入式系统。ShuffleNetV2 由 Megvii (Face++) 团队在 2018 年提出,是 ShuffleNet 的改进版本,主要通过优化信息流和减少内存访问成本来提升性能。

ShuffleNetV2 的设计理念

ShuffleNetV2 主要针对以下几个方面进行了优化:

  1. 模型计算复杂度

    通过减少冗余计算和优化卷积操作,降低计算复杂度,使得模型在计算资源有限的情况下仍能保持较高性能。
  2. 内存访问成本

    内存访问成本是影响模型效率的一个重要因素。ShuffleNetV2 通过优化特征图的传递和处理,减少内存带宽的占用。
  3. 并行度

    设计上考虑了硬件的并行计算能力,确保模型在并行处理器上的高效运行。

核心模块

  1. Channel Split(通道分割)

    输入特征图被分成两部分,一部分直接传递到下一层,另一部分经过复杂的卷积操作。这种设计减少了每一层的计算量,同时保留了原始信息。
  2. Channel Shuffle(通道打乱)

    在通道级别打乱特征图。通过这种操作,确保在网络的后续层中,各个通道之间的信息能够充分混合,提高特征的表达能力。
  3. Pointwise Group Convolution(逐点分组卷积)

    使用逐点分组卷积(1x1 卷积)来减少特征图通道数,同时分组卷积进一步降低计算量。
  4. Depthwise Convolution(深度可分离卷积)

    深度可分离卷积将标准卷积分解为深度卷积和逐点卷积两部分,从而减少计算量。
  5. Element-wise Add(元素级加法)

    使用元素级加法而非拼接操作,将原始输入与处理后的特征图结合,这样不仅减少了特征图的数量,还避免了高计算复杂度。

ShuffleNetV2 的性能优化

  1. 降低内存访问成本

    通过减少特征图的传递和拼接操作,减少了内存访问成本。这一点对资源受限的移动设备尤为重要。
  2. 提升计算效率

    通过优化卷积操作和特征图处理方式,ShuffleNetV2 能够在计算资源有限的情况下保持高效的计算性能。
  3. 增加并行度

    ShuffleNetV2 的设计充分考虑了硬件的并行计算能力,通过优化计算操作和数据流,提高了模型的并行计算效率。

总结

ShuffleNetV2 通过优化计算复杂度、内存访问成本和并行度,提供了一种高效的卷积神经网络架构。其设计理念和核心模块,如 Channel Split、Channel Shuffle 和 Depthwise Convolution 等,不仅降低了计算和内存开销,还提高了模型的性能和效率。这使得 ShuffleNetV2 成为一种非常适合在资源受限设备上部署的深度学习模型。

2. ShuffleNetv2的代码实现

2.1 将ShuffleNetv2添加到YOLOv5中

关键步骤一: 将下面代码粘贴到/projects/yolov5-6.1/models/common.py文件中

def channel_shuffle(x, groups):batchsize, num_channels, height, width = x.data.size()channels_per_group = num_channels // groups# reshapex = x.view(batchsize, groups,channels_per_group, height, width)x = torch.transpose(x, 1, 2).contiguous()# flattenx = x.view(batchsize, -1, height, width)return xclass conv_bn_relu_maxpool(nn.Module):def __init__(self, c1, c2):  # ch_in, ch_outsuper(conv_bn_relu_maxpool, self).__init__()self.conv = nn.Sequential(nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(c2),nn.ReLU(inplace=True),)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)def forward(self, x):return self.maxpool(self.conv(x))class Shuffle_Block(nn.Module):def __init__(self, inp, oup, stride):super(Shuffle_Block, self).__init__()if not (1 <= stride <= 3):raise ValueError('illegal stride value')self.stride = stridebranch_features = oup // 2assert (self.stride != 1) or (inp == branch_features << 1)if self.stride > 1:self.branch1 = nn.Sequential(self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),nn.BatchNorm2d(inp),nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),)self.branch2 = nn.Sequential(nn.Conv2d(inp if (self.stride > 1) else branch_features,branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),nn.BatchNorm2d(branch_features),nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),)@staticmethoddef depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)def forward(self, x):if self.stride == 1:x1, x2 = x.chunk(2, dim=1)  # 按照维度1进行splitout = torch.cat((x1, self.branch2(x2)), dim=1)else:out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)out = channel_shuffle(out, 2)return out

ShuffleNet 的主要流程涉及一系列精心设计的操作,以最大限度地提高计算效率,同时确保模型的表达能力。以下是 ShuffleNet 的主要流程:

1. 初始卷积层

  1. 输入处理

    • 输入图像首先通过一个标准的卷积层进行处理,这个卷积层的作用是提取初始特征。

  2. 特征图大小和通道数调整

    • 初始卷积层通常会调整特征图的大小和通道数,以便于后续层的处理。

2. 分组卷积(Grouped Convolution)

  1. 特征图分组

    • 特征图在通道维度上分成多个组。分组卷积将特征图分为若干小组,并对每一小组单独进行卷积操作。这种方式可以大幅减少计算量。

  2. 1x1 卷积(Pointwise Convolution)

    • 使用 1x1 卷积调整每一组特征图的通道数。1x1 卷积主要用于减少通道数,以减小计算量。

3. 通道打乱(Channel Shuffle)

  1. 通道打乱操作

    • 为了确保不同组之间的信息可以相互交流,使用通道打乱操作。具体来说,将特征图的通道重新排列,以便在下一次分组卷积时,不同组之间的信息能够充分混合。

4. 深度可分离卷积(Depthwise Separable Convolution)

  1. 深度卷积(Depthwise Convolution)

    • 在深度卷积中,每个卷积核只在单个通道上进行卷积操作,不改变通道数。这样可以显著减少计算量。

  2. 逐点卷积(Pointwise Convolution)

    • 在深度卷积之后,使用逐点卷积(1x1 卷积)来调整通道数。这一步结合了所有通道的信息。

5. 残差连接(Residual Connection)

  1. 特征图合并

    • 将原始输入特征图与经过上述处理后的特征图通过元素级加法(或拼接操作)合并。这一步类似于残差网络(ResNet)中的残差连接,帮助梯度在网络中更好地传播。

6. 通道分割(Channel Split)

  1. 特征图分割

    • 在某些版本中(如 ShuffleNetV2),特征图被分成两部分,一部分直接传递到下一层,另一部分经过复杂操作后再与第一部分合并。这种设计进一步减少了计算量。

7. 多次重复上述模块

  1. 模块重复

    • 上述操作模块会被重复多次,以构建深层网络。这些模块的重复次数和具体配置会根据网络的设计需求而定。

8. 最终卷积层和分类层

  1. 全局池化(Global Pooling)

    • 在网络的最后,通常会使用全局平均池化层,将特征图的空间维度压缩到单个数值。

  2. 全连接层

    • 最后,通过一个全连接层(或完全卷积层),将特征映射到分类标签空间,以完成分类任务。

2.2 新增yaml文件

关键步骤二在下/projects/yolov5-6.1/models下新建文件 yolov5-shufflenetv2.yaml并将下面代码复制进去

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args]# Shuffle_Block: [out, stride][[ -1, 1, conv_bn_relu_maxpool, [ 32 ] ], # 0-P2/4[ -1, 1, Shuffle_Block, [ 128, 2 ] ],  # 1-P3/8[ -1, 3, Shuffle_Block, [ 128, 1 ] ],  # 2[ -1, 1, Shuffle_Block, [ 256, 2 ] ],  # 3-P4/16[ -1, 7, Shuffle_Block, [ 256, 1 ] ],  # 4[ -1, 1, Shuffle_Block, [ 512, 2 ] ],  # 5-P5/32[ -1, 3, Shuffle_Block, [ 512, 1 ] ],  # 6]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P4[-1, 1, C3, [256, False]],  # 10[-1, 1, Conv, [128, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 2], 1, Concat, [1]],  # cat backbone P3[-1, 1, C3, [128, False]],  # 14 (P3/8-small)[-1, 1, Conv, [128, 3, 2]],[[-1, 11], 1, Concat, [1]],  # cat head P4[-1, 1, C3, [256, False]],  # 17 (P4/16-medium)[-1, 1, Conv, [256, 3, 2]],[[-1, 7], 1, Concat, [1]],  # cat head P5[-1, 1, C3, [512, False]],  # 20 (P5/32-large)[[14, 17, 20], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

温馨提示:本文只是对yolov5l基础上添加swin模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。


# YOLOv5n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple# YOLOv5s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple# YOLOv5l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple# YOLOv5m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple# YOLOv5x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple

2.3 注册模块

关键步骤三在yolo.py中注册, 大概在260行左右分别添加 ‘ conv_bn_relu_maxpool, Shuffle_Block’

2.4 执行程序

在train.py中,将cfg的参数路径设置为yolov5-ShuffleNetv2.yaml的路径

建议大家写绝对路径,确保一定能找到

🚀运行程序,如果出现下面的内容则说明添加成功🚀

 3. 完整代码分享

https://pan.baidu.com/s/1EKQQOCdwIUWrR3LcFaCk8A?pwd=aaus

提取码: aaus 

4. GFLOPs

关于GFLOPs的计算方式可以查看:百面算法工程师 | 卷积基础知识——Convolution

未改进的GFLOPs

img

改进后的GFLOPs

5.总结

ShuffleNet的设计理念主要集中在提高计算效率和减少参数量,同时保持较高的准确性。为了实现这一目标,ShuffleNet引入了两个关键的操作:点卷积(Pointwise Convolution)和通道洗牌(Channel Shuffle)。首先,ShuffleNet采用了一种被称为深度可分离卷积(Depthwise Separable Convolution)的操作。这种操作将标准卷积分解为两个更简单的操作:深度卷积(Depthwise Convolution)和点卷积(Pointwise Convolution)。深度卷积在每个输入通道上独立执行卷积操作,而点卷积则用于将这些独立处理后的通道进行线性组合。通过这种分解方式,计算量和参数量都得到了大幅度的减少。在此基础上,ShuffleNet进一步引入了通道洗牌的概念。在常规的卷积操作中,不同通道之间的信息交流是有限的。为了增强通道间的信息交流,ShuffleNet将通道划分为若干组,并在每一组内进行卷积操作后,将通道重新排列(洗牌),使得下一组操作能够接收到来自不同组的通道信息。这样,通过多层的叠加和洗牌操作,网络能够更有效地捕捉不同通道之间的关联特征,从而提升模型的表现力。此外,ShuffleNet采用了分组卷积(Grouped Convolution)的策略,即将通道划分为多个组,每组独立进行卷积操作。结合通道洗牌,这种策略进一步降低了计算复杂度和参数量,适合在移动设备等资源受限的环境中应用。总的来说,ShuffleNet通过巧妙地设计卷积操作和通道处理方式,显著提升了计算效率和模型的轻量化程度,使得其在保持较高准确率的同时,能够在计算资源有限的设备上高效运行。这种创新的架构设计不仅为移动设备上的实时图像处理提供了可能,也为其他需要高效视觉处理的应用场景提供了有力支持。

相关文章:

YOLOv5改进 | 主干网络 | 将主干网络替换为轻量化的ShuffleNetv2【原理 + 完整代码】

&#x1f4a1;&#x1f4a1;&#x1f4a1;本专栏所有程序均经过测试&#xff0c;可成功执行&#x1f4a1;&#x1f4a1;&#x1f4a1; 目标检测是计算机视觉中一个重要的下游任务。对于边缘盒子的计算平台来说&#xff0c;一个大型模型很难实现实时检测的要求。基于一系列消融…...

LeetCode:字母异位词分组

文章收录于LeetCode专栏 LeetCode地址 字母异位词分组 题目 给定一个字符串数组&#xff0c;将字母异位词组合在一起。字母异位词指字母相同&#xff0c;但排列不同的字符串。所有输入均为小写字母&#xff0c;且不考虑答案输出的顺序。   示例1&#xff1a; 输入: strs [“…...

技术与业务的完美融合:大数据BI如何真正提升业务价值

数据分析有一点经典案例 沃尔玛的啤酒和尿布案例 开始做BI的时候&#xff0c;大家肯定都看过书&#xff0c;那么一定也看过一个经典的案例&#xff0c;就是沃尔玛的啤酒和尿布的案例。这个案例确实很经典&#xff0c;但其实是一个失败的案例。为什么这么说呢&#xff1f;很明显…...

计网复习资料

一、选择题&#xff08;每题2分&#xff0c;共40分&#xff09; 1. Internet 网络本质上属于&#xff08; &#xff09;网络。 A.电路交换 B.报文交换 C.分组交换 D.虚电路 2.在 OSI 参考模型中,自下而上第一个提供端到端服务的是( )。 A.数据链路层 B.传输…...

华为策略流控

以下脚本仅做参考&#xff0c;具体IP地址和接口请按照现场实际情况写入。 [Huawei]acl 3001 [Huawei-acl-adv-3001]rule permit ip source 192.168.1.10 0.0.0.0 destination 192.168.2.10 0.0.0.0 //匹配需要做测试的源和目标地址 [Huawei-acl-adv-3001]rule permit ip sour…...

刷代码随想录有感(98):动态规划——爬楼梯

题干&#xff1a; 代码&#xff1a; class Solution { public:int climbStairs(int n) {if(n 1)return 1;if(n 2)return 2;vector<int>dp(n 1);dp[0] 0;dp[1] 1;dp[2] 2;for(int i 3; i < n; i){dp[i] dp[i - 1] dp[i - 2];}return dp[n];} }; 其实就是斐波…...

零基础入门篇①⑦ Python可变序列类型--集合

Python从入门到精通系列专栏面向零基础以及需要进阶的读者倾心打造,9.9元订阅即可享受付费专栏权益,一个专栏带你吃透Python,专栏分为零基础入门篇、模块篇、网络爬虫篇、Web开发篇、办公自动化篇、数据分析篇…学习不断,持续更新,火热订阅中🔥专栏限时一个月(5.8~6.8)重…...

基于NodeJs 的Vue安装和创建项目

基于NodeJs 的Vue安装和创建项目 一、Node.js的下载与安装 下载地址&#xff1a; https://nodejs.org/en/download/prebuilt-installer 安装完之后&#xff0c;启动 cmd命令行&#xff0c;验证 Node.js 是否安装成功 二、配置npm的全局模块的存放路径以及缓存的路径 注&…...

【简单介绍下DALL-E2,什么是DALL-E2?】

&#x1f308;个人主页: 程序员不想敲代码啊 &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共…...

springboot+mqtt使用总结

1.软件的选型 1.1.使用免费版EMQX 1.1.1.下载 百度搜索的目前是会打开官网&#xff0c;这里提供下免费版的使用链接EMQX使用手册 文档很详细&#xff0c;这里不再记录了。 1.2.使用rabbitmq rabbitmq一般做消息队列用&#xff0c;作为mqtt用我没有找到详细资料&#xff0c…...

搭建自己的组件库<2>dialog 组件

目录 设置title 插槽显示 控制宽高 关闭对话框 transition实现动画 引入深度选择器 同样创建组件dialogue.vue后全局注册 dialogue模版&#xff1a; <template><!-- 对话框的遮罩 --><div class"miao-dialog_wrapper"><!-- 真的对话框 …...

less学习笔记

一、什么是less&#xff1f; Less是CSS预处理语言&#xff0c;可以使用变量、嵌套、运算等&#xff0c;便于维护项目CSS样式代码。 二、less安装 使用npm包管理工具&#xff0c;全局安装less包 npm install -g lessless安装好的同时&#xff0c;lessc也安装好了 通过 lessc -…...

基于关键词自动采集抖音视频排名及互动数据(点赞、评论、收藏)

在当今的社交媒体时代&#xff0c;抖音作为一个热门短视频平台&#xff0c;吸引了大量用户和内容创作者。对于研究和分析抖音上的热门视频及其互动数据&#xff08;如点赞、评论、收藏等&#xff09;&#xff0c;自动化的数据采集工具显得尤为重要。本项目旨在开发一个基于关键…...

selenium中switch_to.window切换窗口的用法

打开百度多个窗口&#xff0c;遍历切换每个窗口&#xff0c;切到【百度地图】就停止。 使用了driver.switch_to.window&#xff08;&#xff09; 来切换&#xff0c; 参数是handle值 from selenium import webdriver import time# 创建浏览器驱动对象 from selenium.webdrive…...

【nerf】nvidia-smi

当cmd下nvidia -smi不能使用时候 沿着以下路径打开cmd&#xff0c;再输入&#xff0c;可以查看cuda版本 然后查看电脑安装的...

测试工具fio

一、安装部署 fio是一款优秀的磁盘IO测试工具&#xff0c;在Linux中比较常用于测试磁盘IO 其下载地址&#xff1a;https://brick.kernel.dk/snaps/fio-2.1.10.tar.gz 或者登录其官网&#xff1a;http://freshmeat.sourceforge.net/projects/fio/ 进行下载。 tar -zxvf fio-…...

详解 Flink 的状态管理

一、Flink 状态介绍 1. 流处理的无状态和有状态 无状态的流处理&#xff1a;根据每一次当前输入的数据直接转换输出结果的过程&#xff0c;在处理中只需要观察每个输入的独立事件。例如&#xff0c; 将一个字符串类型的数据拆分开作为元组输出或将每个输入的数值加 1 后输出。…...

手机怎么压缩视频?归纳了三种快速压缩方案

手机怎么压缩视频&#xff1f;在数字时代&#xff0c;手机已经成为我们记录生活的重要工具&#xff0c;而视频作为其中的一种主要形式&#xff0c;更是占据了极大的存储空间。然而&#xff0c;随着手机拍摄的视频越来越多&#xff0c;如何高效压缩视频以节省存储空间&#xff0…...

【实战】kafka3.X kraft模式集群搭建

文章目录 前言kafka2.0与3.x对比准备工作JDK安装kafka安装服务器增加hosts 修改Kraft协议配置文件格式化存储目录 启动集群停止集群测试Kafka集群创建topic查看topic列表查看消息详情生产消息消费消息查看消费者组查看消费者组列表 前言 相信很多同学都用过Kafka2.0吧&#xf…...

华为防火墙配置 SSL VPN

前言 哈喽&#xff0c;我是ICT大龙。本期给大家更新一次使用华为防火墙实现SSL VPN的技术文章。 本次实验只需要用到两个软件&#xff0c;分别是ENSP和VMware&#xff0c;本次实验中的所有文件都可以在文章的末尾获取。话不多说&#xff0c;教程开始。 什么是VPN 百度百科解…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构

React 实战项目&#xff1a;微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇&#xff01;在前 29 篇文章中&#xff0c;我们从 React 的基础概念逐步深入到高级技巧&#xff0c;涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...

深入解析 ReentrantLock:原理、公平锁与非公平锁的较量

ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...

Easy Excel

Easy Excel 一、依赖引入二、基本使用1. 定义实体类&#xff08;导入/导出共用&#xff09;2. 写 Excel3. 读 Excel 三、常用注解说明&#xff08;完整列表&#xff09;四、进阶&#xff1a;自定义转换器&#xff08;Converter&#xff09; 其它自定义转换器没生效 Easy Excel在…...

el-amap-bezier-curve运用及线弧度设置

文章目录 简介示例线弧度属性主要弧度相关属性其他相关样式属性完整示例链接简介 ‌el-amap-bezier-curve 是 Vue-Amap 组件库中的一个组件,用于在 高德地图 上绘制贝塞尔曲线。‌ 基本用法属性path定义曲线的路径,可以是多个弧线段的组合。stroke-weight线条的宽度。stroke…...

运行vue项目报错 errors and 0 warnings potentially fixable with the `--fix` option.

报错 找到package.json文件 找到这个修改成 "lint": "eslint --fix --ext .js,.vue src" 为elsint有配置结尾换行符&#xff0c;最后运行&#xff1a;npm run lint --fix...

Android Framework预装traceroute执行文件到system/bin下

文章目录 Android SDK中寻找traceroute代码内置traceroute到SDK中traceroute参数说明-I 参数&#xff08;使用 ICMP Echo 请求&#xff09;-T 参数&#xff08;使用 TCP SYN 包&#xff09; 相关文章 Android SDK中寻找traceroute代码 设备使用的是Android 11&#xff0c;在/s…...