当前位置: 首页 > news >正文

手写kNN算法的实现-用欧几里德空间来度量距离

kNN的算法思路:找K个离预测点最近的点,然后让它们进行投票决定预测点的类型。

  1. step 1: kNN存储样本点的特征数据和标签数据
  2. step 2: 计算预测点到所有样本点的距离,关于这个距离,我们用欧几里德距离来度量(其实还有很多其他的,比如曼哈顿距离等),并进行排序,拿出前k个样本点。
  3. step 3: 统计前k个样本点的类别,以最多的那个类型作为预测结果。

欧几里德距离:
请添加图片描述

上代码:

import numpy as np
# 用于统计
from collections import Counterclass MyKnn:# 初始化投票的数量,neighbors表示我们要找的点的数量,用于投票决定预测点的类型def __init__(self,neighbors):self.k = neighbors# 因为kNN是一个惰性机器性学习模型,只在预测阶段才会用到的训练数据,不存在训练阶段。或者说在所谓的训练阶段,只是为了存储样本数据。# X为特征集# Y为对应的标签集def fit(self,X,Y):self.X = np.array(X)self.Y = np.array(Y)# 如果特征集不是矩阵阵列或则标签集不是一维数组,都直接抛异常。if self.X.ndim != 2 or self.Y.ndim != 1:raise Exception("dimensions are wrong!")# 如果标签的数量不竺于特征集的行数也直接抛异常if self.X.shape[0] != self.Y.shape[0]:raise Exception("input labels are not correct!")def predict(self,X_pre):# 这是要预测的点pre = np.array(X_pre)# 判断测试点的矩阵是不是和样本点的矩阵一样的,不是直接抛异常if self.X.ndim != pre.ndim:raise Exception("input dimensions are wrong!")# 我们用rs数组来存储预测结果rs = []for p in pre:# 用temp临时数组来存储预测点到所有样本点的欧几里德距离temp = []for a in self.X:# 取出每一个样本点来与预测点计算欧几里德距离# np.sqrt(((p - a) ** 2).sum(-1)) 算出距离,先求出每预测点到样本点的差值,再平方,再将所有平方后的值加在一起,最后对加起来的结果进行开方,得到欧几里德距离。并临时存储在temp数组里temp.append(np.sqrt(((p - a) ** 2).sum(-1)))temp = np.array(temp)# 对所有距离进行排序,用np.argsort排序时,结果对识破距离的下标,而不是具体的值,因为我们并不关心具体的值,我们只要前k个点。用np.argsort排序完,取出前k个点的indices(就是下标)neighbors_indices = np.argsort(temp)[:self.k]#  通过前k个点的下标,取出相应的标签,然后用Counter进行统计(这个就是计票环节)ss = np.take(self.Y,neighbors_indices)# 我们开始计票,取出票数第一的标签值。# e.g: Counter(ss) -> {2: 4, 1: 1} 表示标签值为2的得4示,标签为1的得1票# most_common(1) -> [(2, 4)] , 所以most_common(1)[0][0]的值就是 2found = Counter(ss).most_common(1)[0][0]# 预测结果存储到rs数组中rs.append(found)return rs

欧几里德距离的计算:
请添加图片描述

测试上面的kNN算法:

# 用鸢尾花数据集来验证我们上面写的算法
from sklearn.datasets import load_iris
# 使用train_test_split对数据集进行拆分,一部分用于训练,一部分用于测试验证
from sklearn.model_selection import train_test_split
# 1.生成一个kNN模型
myknn = MyKnn(5)
# 2.准备数据集:特征集X_train和标签集y_train
X_train,y_train = load_iris(return_X_y=True)
# 留出30%的数据集用于验证测试
X_train,X_test,y_train,y_test = train_test_split(X_train,y_train,test_size=0.3)
# 3.训练模型
myknn.fit(X_train,y_train)
# 4.预测,acc就是预测结果
acc = myknn.predict(X_test)
# 计算准确率
(acc == y_test).mean()

acc == y_test 得到的结果是

array([ True,  True,  True,  True,  True,  True,  True,  True,  True,True,  True,  True,  True,  True,  True,  True,  True,  True,True,  True,  True,  True,  True,  True,  True,  True,  True,True,  True,  True,  True,  True,  True,  True,  True,  True,False,  True,  True,  True,  True,  True,  True,  True,  True])

True 是1,False是0,准确率就是:

正确的个数 / 总数 = 准确率

用余弦相似度实现kNN算法

相关文章:

手写kNN算法的实现-用欧几里德空间来度量距离

kNN的算法思路:找K个离预测点最近的点,然后让它们进行投票决定预测点的类型。 step 1: kNN存储样本点的特征数据和标签数据step 2: 计算预测点到所有样本点的距离,关于这个距离,我们用欧几里德距离来度量(其实还有很多…...

IGraph使用实例——线性代数计算(blas)

1 概述 在图论中,BLAS(Basic Linear Algebra Subprograms)并不直接应用于图论的计算,而是作为一套线性代数计算中通用的基本运算操作函数集合,用于进行向量和矩阵的基本运算。然而,这些基本运算在图论的相…...

【MySQL】(基础篇五) —— 排序检索数据

排序检索数据 本章将讲授如何使用SELECT语句的ORDER BY子句,根据需要排序检索出的数据。 排序数据 还是使用上一节中的例子,查询employees表中的last_name字段 SELECT last_name FROM employees;输出结果: 发现其输出并没有特定的顺序。其实&#xf…...

C++ C_style string overview and basic Input funcitons

write in advance 最近在做题,遇到一个简单的将console的输入输出到文件中的简单题目,没有写出来。悔恨当初没有踏实地总结string 相关的 I/O 以及与文件的操作。这篇文章旨在记录基础的字符I/O, 简单常用的文件I/O操作函数。 当然,你会说C…...

VS2022+Qt雕刻机单片机马达串口上位机控制系统

程序示例精选 VS2022Qt雕刻机单片机马达串口上位机控制系统 如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助! 前言 这篇博客针对《VS2022Qt雕刻机单片机马达串口上位机控制系统》编写代码,代码整洁&a…...

Android Ble低功耗蓝牙开发

一、新建项目 在Android Studio中新建一个项目,如下图所示: 选择No Activity,然后点击Next 点击Finish,完成项目创建。 1、配置build.gradle 在android{}闭包中添加viewBinding,用于获取控件 buildFeatures {viewB…...

Visual Studio的快捷按键

Visual Studio的快捷按键对于提高编程效率至关重要。以下是一些常用的Visual Studio快捷按键,并按照功能进行分类和归纳: 1. 文件操作 Ctrl O:打开文件Ctrl S:保存文件Ctrl Shift S:全部保存Ctrl N:…...

【WEB系列】过滤器Filter

Filter,过滤器,属于Servlet规范,并不是Spring独有的。其作用从命名上也可以看出一二,拦截一个请求,做一些业务逻辑操作,然后可以决定请求是否可以继续往下分发,落到其他的Filter或者对应的Servl…...

[书生·浦语大模型实战营]——LMDeploy 量化部署 LLM 实践

1.基础作业 1.1配置 LMDeploy 运行环境 创建开发机 创建新的开发机,选择镜像Cuda12.2-conda;选择10% A100*1GPU;点击“立即创建”。注意请不要选择Cuda11.7-conda的镜像,新版本的lmdeploy会出现兼容性问题。其他和之前一样&…...

TiDB-从0到1-配置篇

TiDB从0到1系列 TiDB-从0到1-体系结构TiDB-从0到1-分布式存储TiDB-从0到1-分布式事务TiDB-从0到1-MVCCTiDB-从0到1-部署篇TiDB-从0到1-配置篇 一、系统配置 TiDB的配置分为系统配置和集群配置两种。 其中系统配置对应TiDB Server(不包含TiKV和PD的参数&#xff0…...

微信小程序按钮设计与交互:打造极致用户体验

微信小程序作为一种流行的应用形式,其界面设计和交互体验对于用户吸引力和留存率至关重要。其中,按钮作为用户与小程序进行交互的主要方式之一,其设计和实现直接影响到用户体验的质量。在本文中,我们将探讨微信小程序按钮的设计与…...

ES6中如何使用class和extends关键字实现继承?

在ES6中,可以使用class关键字来定义类,使用extends关键字来实现继承。下面是一个示例: // 父类 class Parent {constructor(name) {this.name name;}sayHello() {console.log(Hello, my name is ${this.name});} }// 子类 class Child ex…...

Linux:基本指令

文章目录 ls指令pwd指令cd指令touch指令mkdir指令rmdir指令 && rm指令cp指令man指令echo指令输出重定向追加重定向 cat指令输入重定向 mv指令which指令alias指令more && less指令head && tail指令事件相关的指令date显示时间戳 cal指令find指令grep指令…...

商业C++静态代码检测工具PC-lint Plus 、 polysace和sonarqube对比

商业C静态代码检测工具PC-lint Plus 、 polysace和sonarqube对比 特性/工具PC-lint PlusPolyspaceSonarQube主要功能高精度静态代码分析、编码标准检查高级静态分析和形式验证、优化嵌入式系统综合性代码质量管理、静态分析、技术债务管理集成方式可集成到IDE和构建系统与开发…...

邬家桥公园

文|随意的风 原文地址 我游览过现存规模最大、保存最完整的皇家园林颐和园,瞻仰过拥有世界上最大祭天建筑群的天坛公园,那都是多年前的事情了。 邬家桥公园相比颐和园、天坛公园,气势雄伟倒谈不上。它没有西湖的水平如镜&#xff…...

Flutter 中的 RenderObjectToWidgetAdapter 小部件:全面指南

Flutter 中的 RenderObjectToWidgetAdapter 小部件:全面指南 Flutter 是一个功能强大的 UI 框架,由 Google 开发,允许开发者使用 Dart 语言构建跨平台的移动、Web 和桌面应用。在 Flutter 的渲染体系中,RenderObjectToWidgetAdap…...

SNAT与DNAT

一、SNAT策略概述 1、SNAT 策略的典型应用环境 局域网主机共享单个公网IP地址接入Internet(私有IP不能在Internet中正常路由) 局域共享上网 2、 SNAT 策略的原理 修改数据包的源地址 把从内网 --> 外网的数据的源内网地址转换成公网源地址 3、SN…...

MySql八股文知识点总结,一篇文章让mysql成为面试加分项

MySql八股文知识点总结(自检) 1.前言 参与了几次中大厂的面试,你会发现一面时对于八股文的考察也具有侧重点(MySQLRedis > 网络 > 系统 >设计模式 > java集合 >spring) 本文的目标就是通过这一篇文章让你能在面…...

Python 很好用的爬虫框架:Scrapy:

了解Scrapy 爬虫框架的工作流程&#xff1a; 在scrapy中&#xff0c; 具体工作流程是这样的&#xff1a; 首先第一步 当爬虫引擎<engine>启动后&#xff0c; 引擎会到 spider 中获取 start_url<起始url> 然后将其封装为一个request对象&#xff0c; 交给调度器<…...

C/C++|关于 namespace 在C++中的代码组织

命名空间&#xff08;namespace&#xff09;在C中用于组织代码&#xff0c;避免命名冲突&#xff0c;并提供更好的代码结构和可读性。下面详细解释命名空间在C多文件编写中的各种作用和表达。 基本概念 命名空间是一个声明区域&#xff0c;用于组织代码&#xff0c;防止不同部…...

selenium自动化测试入门 —— 上传文件

selenium无法识别非web的控件&#xff0c;上传文件窗口为系统自带&#xff0c;无法识别窗口元素。 上传文件有两种场景&#xff1a;input控制上传和非input控件上传。 大多数情况都是input控件上传文件&#xff0c;只有非常少数的使用自定义的非input上传文件。 一、input控…...

C# Math.Round() 四舍六入五取偶

文章目录 1.重载列表2. 示例 Math.Round() 为四舍六入五取偶 1.重载列表 API说明Round(Double)将小数值舍入到最近的整数值Round(Double, Int32)将小数值按指定的小数位数舍入Round(Double, Int32, MidpointRounding)将小数值按指定的小数位数舍入&#xff0c;MidpointRoundin…...

springboot手动触发参数校验,service层调用参数校验

背景 入参校验一般是在控制层通过javax.validation.constraints包下的规则注解如NotNull结合Valid与Validated实现&#xff0c;但是有时候我们的方法不提供给controller调用&#xff0c;这时候就无法触发自动参数校验&#xff0c;为此我们可以在不更改校验代码的前提下手动触发…...

动手学深度学习4.10 实战Kaggle比赛:预测房价-笔记练习(PyTorch)

以下内容为结合李沐老师的课程和教材补充的学习笔记&#xff0c;以及对课后练习的一些思考&#xff0c;自留回顾&#xff0c;也供同学之人交流参考。 本节课程地址&#xff1a;实战 Kaggle 比赛&#xff1a;预测房价_哔哩哔哩_bilibili 本节教材地址&#xff1a;4.10. 实战Ka…...

1035 插入与归并(测试点6)

solution 类型判断&#xff1a;插入排序中已排序的部分有序&#xff0c;未排序的和原数组元素相同&#xff1b;否则为归并排序测试点6&#xff1a;对于归并排序的子序列长度&#xff0c;不能简单视为前k个有序则子序列长度就是k 例如该测试用例的归并排序的子序列长度应该为2&…...

什么情况下需要使用分布式事务,有哪些方案?

引言&#xff1a;在当今的分布式系统中&#xff0c;数据的一致性和事务的处理成为了关键问题。随着应用程序的规模不断扩大和复杂性的增加&#xff0c;单一数据库事务的能力已经无法满足需求。因此&#xff0c;引入了分布式事务的概念&#xff0c;以确保跨多个节点的操作能够保…...

Java加密体系结构参考指南-Java Cryptography Architecture

本文是从英文的官网摘了翻译的&#xff0c;用作自己的整理和记录。水平有限&#xff0c;欢迎指正。版本是&#xff1a;22 原文地址&#xff1a;https://docs.oracle.com/en/java/javase/22/security/java-cryptography-architecture-jca-reference-guide.html#GUID-815542FE-CF…...

C++中避免内存泄漏的方法

在C++中,内存泄漏是一个常见的问题,它发生在程序申请了一块内存后,没有正确地释放它。这会导致程序运行时间越长,内存占用越大,最终可能导致系统崩溃。为了避免内存泄漏,你可以遵循以下一些策略: 正确使用new和delete:当你使用new操作符动态分配内存时,确保在不再需要…...

5.1 实体完整性

一个表只能有一个主键约束&#xff0c;且主键约束不能取空值。 通过unique约束定义唯一性&#xff0c;为了保证一个表非主键列不输入重复值&#xff0c;可在该列定义unique约束。 primary key约束与unique约束主要区别如下。 (1)一个表只能创建一个primary key约束&#xff0…...

(学习笔记)数据基建-数据质量

数据基建-数据质量 数据质量数据质量保障措施如何推动上下游开展数据质量活动数据质量保障如何量化产出数据质量思考全链路数据质量保障项目 数据质量 概念&#xff1a;数据质量&#xff0c;意如其名&#xff0c;就是数据的准确性&#xff0c;他是数据仓库的基石&#xff0c;控…...

电商网站运营/百度不让访问危险网站怎么办

1 列表生成式和生成器from numpy import randoma random.random(10000)lst []for i in a: lst.append(i * i) # 不推荐做法lst [i * i for i in a] # 使用列表生成式gen (i * i for i in a) # 生成器更节省内存2 字典推导式创建子集a {apple: 5.6, orange: 4.7, ban…...

系统难还是网站设计难做/seo综合优化公司

http://www.cnblogs.com/skywang12345/category/455711.html http://www.cnblogs.com/liqiu/p/3302607.html转载于:https://www.cnblogs.com/zengkefu/p/7082142.html...

婚恋网站建设技巧/朔州seo

第一名&#xff1a;githubgithubgithub作为全球最大的开源代码库及版本控制系统&#xff0c;相信大家都不陌生吧&#xff1f;小编也喜欢空闲的时候去逛逛&#xff0c;上面数以万计的开源项目为热爱编程的程序员们提供了展示自己的机会&#xff0c;即使你不参与开源项目&#xf…...

啤酒网站建设/计算机培训机构哪个最好

Centos 7.0设置/etc/rc.local无效问题解决 安装centos7以后按照以往习惯修改rc.local添加开机启动命令&#xff0c;但重启后发现无效&#xff0c;再次重启发现依然如故 检查系统rc.local服务运行情况 systemctl | grep "rc.local" # rc-local.service …...

淘宝做短视频网站好/长春网站提升排名

题解 视频 \(\color{red}A\) 题意? 输入一个数,如果这个数大于3200,那么就输出后面的字符串,否则输出red 代码 #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm>using namespace std ;int a ; string s ;int main (…...

南昌建网站的公司/百度代理公司怎么样

题目链接&#xff1a;https://acm.hdu.edu.cn/showproblem.php?pid6446 题目&#xff1a; 给出一颗树&#xff0c;n个结点&#xff0c;n个结点有n&#xff01;种排列组合&#xff0c;假设其中一种是1 3 5 2 4&#xff0c;那么就要求出1-3,3-5,5-2,2-4的路径总和&#xff0c;问…...