当前位置: 首页 > news >正文

转型AI产品经理(4):“认知负荷”如何应用在Chatbot产品

认知负荷理论主要探讨在学习过程中,人脑处理信息的有限容量以及如何优化信息的呈现方式以促进学习。认知负荷定律认为,学习者的工作记忆容量是有限的,而不同类型的认知任务会对工作记忆产生不同程度的负荷,从而影响学习效果。以下是对认知负荷定律的简要介绍:

1、认知负荷的三种类型:

    • 内在认知负荷:由任务本身的复杂性决定,是无法减少的。例如,学习复杂的数学公式自然会带来较高的内在认知负荷。

    • 外在认知负荷:由学习环境和教学材料的设计引起,可以通过优化教学设计来降低。不恰当的教学方法会无谓地增加认知负荷,而良好的设计则能减少外在认知负荷。

    • 关联认知负荷当学习材料被有效组织,与学习者已有的知识结构(图式)相匹配时,可以减少认知负荷,帮助信息更容易被吸收进入长时记忆。

2、工作记忆限制:工作记忆是信息暂时储存和加工的地方,它的容量有限,一般认为能同时处理的信息单元在5至9个之间(这个数字被称为米勒的“神奇数字7±2”)。因此,过多或过于复杂的信息会超出工作记忆的处理能力,导致学习效率下降。

3、图式理论:认知负荷理论强调通过构建和利用“图式”(即心理结构,用于组织和存储信息)来减轻工作记忆的负担。当学习材料与已有图式相结合时,信息处理更为高效,可以有效降低认知负荷。

长期以来,认知负荷理论因其广泛的适用性和实用性,在多个领域中得到了应用,包含教育、用户体验设计、职场培训,体育训练等领域。认知负荷定律提醒我们在设计学习材料、教学策略或产品交互时,要充分考虑人类认知的局限性,通过科学的方法减少不必要的认知负荷,从而促进有效学习和高效信息处理。那对于设计一款Chatbot的聊天机器人的产品来说,我们要如何将其思想应用到产品设计上呢?

Chatbot即聊天机器人,它是一种基于人工智能和自然语言处理技术的交互系统,它能够模拟人类对话,实现自动化服务和信息传递。它的设计通常涉及复杂的对话逻辑设计、用户意图识别、语音或文本交互、机器学习模型训练和持续优化等。应用好“认知负荷”理论可以显著提升Chatbot产品的用户体验,让用户在与Chatbot交互时不会感到信息过载或困惑,应用时包含但不限于以下场景:

  1. 简化交互流程:认知负荷理论强调减少用户在执行任务时需要记忆和处理的信息量。因此,在Chatbot设计中,应尽量简化对话流程,避免冗长或复杂的指令,确保用户能轻松理解并快速做出反应。同时,避免过多的按钮、链接和装饰元素,确保界面清晰易读。

  2. 清晰明确的提示与反馈:在用户输入信息后,提供直观且即时的反馈,帮助用户理解Chatbot的状态和他们的请求是否被正确理解。使用明确的语言,避免行业术语或模糊的表达,减少用户在解读反馈时的认知成本。

  3. 分段呈现信息:根据信息处理能力的限制,Chatbot应避免一次性提供过多信息,而应采用逐步揭示的方式,分段提供内容,使用户可以逐步消化吸收。分段提示时可采用只展示当前步骤相关的信息或按照重要性和紧急程度排序信息,先提供最关键的信息,逐步引导用户深入了解细节等方式。

  4. 个性化交互:通过分析用户的历史交互数据,Chatbot可以适应用户的偏好和需求,提供个性化的建议和回应,从而减少用户在选择过程中的决策负担。

  5. 视觉辅助:在适当情况下,利用图表或图像等视觉元素来辅助文字信息,可以帮助用户更快理解和记忆信息,降低认知负荷,或者是结合语音、文字和图像等多种交互方式,减少用户对单一感官的依赖。

  6. 适应性学习:设计Chatbot可使其能够根据用户的反馈和理解水平,自适应调整对话的难度,确保用户能够轻松跟随对话进程。此外,如果发现用户对某个话题或指令询问频繁,Chatbot可以主动优化对该主题的响应策略,简化未来类似情境下的交互流程。

    不同定位的Chatbot在具体的设计上还会因为业务的不同而有很多细节的变化。比如,在客户支持中,Chatbot可以通过逐步引导用户解决问题,提供相关的帮助文档链接,并在每一步提供清晰的反馈,确保用户理解每个步骤。而在教育类的Chatbot中,Chatbot可以通过分段讲解课程内容,提供实时答疑和个性化学习建议,帮助学生更高效地学习。

    在Chatbot的产品设计中通过应用“认知负荷”理论的思想可以显著提升产品的用户体验,让用户在与Chatbot交互时能够轻松理解和处理信息,提高交互效率和用户满意度。如果你还有其他的“认知负荷”理论应用场景,欢迎分享交流!



 

相关文章:

转型AI产品经理(4):“认知负荷”如何应用在Chatbot产品

认知负荷理论主要探讨在学习过程中,人脑处理信息的有限容量以及如何优化信息的呈现方式以促进学习。认知负荷定律认为,学习者的工作记忆容量是有限的,而不同类型的认知任务会对工作记忆产生不同程度的负荷,从而影响学习效果。以下…...

【C++11】常见的c++11新特性(一)

文章目录 1. C11 简介2. 常见的c11特性3.统一的列表初始化3.1initializer_list 4. decltype与auto4.1decltype与auto的区别 5.nullptr6.右值引用和移动语义6.1左值和右值6.1.1左值的特点6.1.2右值的特点6.1.3右值的进一步分类 6.2左值引用和右值引用以及区别6.2.1左值引用6.2.2…...

牛客周赛 Round 46 题解 C++

目录 A 乐奈吃冰 B 素世喝茶 C 爱音开灯 D 小灯做题 E 立希喂猫 F 祥子拆团 A 乐奈吃冰 #include <iostream> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <set> #include <vector>…...

9.3 Go 接口的多态性

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...

Java通过字符串字段匹配形成树形结构

Java通过字符串字段匹配形成树形结构 文章目录 Java通过字符串字段匹配形成树形结构数据表模拟数据解决办法:1、domian 类:2、Node层(形成树形关系):3、controller 层4、Util 工具类1、BeanCopierUtil4、Mapper5、Manager(用来组装树形结构)6、测试:有的时候我们形成树形不…...

数字孪生智慧水利:精准管理与智能决策的新时代

图扑数字孪生技术在智慧水利中的应用&#xff0c;通过虚拟模型与真实水利系统的无缝连接&#xff0c;实现对水资源和水利工程的全面监控和精细管理。实时数据采集与动态模拟提升了水利系统的预测和响应能力&#xff0c;从洪水预警到水质监测&#xff0c;数字孪生助力各项决策更…...

基于ChatGLM3的本地问答机器人部署流程

基于ChatGLM3的本地问答机器人部署流程 前言一、确定文件结构1.新建文件夹储存本地模型2.下载源码和模型 二、Anaconda环境搭建1.创建anaconda环境2.安装相关库3.设置本地模型路径4.启动 三、构建本地知识库1.下载并安装postgresql2.安装c库3.配置向量插件 四、线上运行五、 全…...

归并排序——逆序数对的统计

逆序数对的统计 题目描述 运行代码 #include <iostream> using namespace std; #define LL long long const int N 1e5 5; int a[N], tmp[N]; LL merge_sort(int q[], int l, int r) {if (l > r)return 0; int mid l r >> 1; LL res merge_sort(q, l,…...

基于截图和模拟点击的自动化压测工具开发(MFC)

1.背景 想对一个MFC程序做自动压测功能&#xff0c;根据判断程序界面某块区域是否达到预定状态&#xff0c;来自动执行鼠标点击或者键盘输入的操作&#xff0c;以解决测试人员需要重复手动压测问题。 1.涉及的技术 串口控制&#xff0c;基于MFC橡皮筋类(CRectTracker)做一个…...

力扣每日一题 6/10

881.救生艇[中等] 题目&#xff1a; 给定数组 people 。people[i]表示第 i 个人的体重 &#xff0c;船的数量不限&#xff0c;每艘船可以承载的最大重量为 limit。 每艘船最多可同时载两人&#xff0c;但条件是这些人的重量之和最多为 limit。 返回 承载所有人所需的最小船…...

[知识点] 内存顺序属性的用途和行为

C标准库中定义了以下几种内存顺序属性&#xff1a; std::memory_order_relaxedstd::memory_order_consumestd::memory_order_acquirestd::memory_order_releasestd::memory_order_acq_relstd::memory_order_seq_cst 1. std::memory_order_relaxed 定义&#xff1a;不提供同步…...

JAVA Mongodb 深入学习(二)索引的创建和优化

一、常用索引类型 1、单个索引 单个索引的创建 db.你的表名.createIndex({"你的字段名":1}) 单个索引的创建且是唯一索引 db.你的表名.createIndex({"你的字段名":1}),{ unique: true }) 2、复合索引 将多个过滤的字段&#xff0c;做成索引&#xff0c;…...

转让北京劳务分包地基基础施工资质条件和流程

地基基础资质转让流程是怎样的?对于企业来说&#xff0c;资质证书不仅是实力的证明&#xff0c;更是获得工程承包的前提。而在有了资质证书后&#xff0c;企业才可以安心的准备工程投标&#xff0c;进而在工程竣工后获得收益。而对于从事地基基础工程施工的企业&#xff0c;需…...

Python基础——字符串

一、Python的字符串简介 Python中的字符串是一种计算机程序中常用的数据类型【可将字符串看作是一个由字母、数字、符号组成的序列容器】&#xff0c;字符串可以用来表示文本数据。 通常使用一对英文的单引号&#xff08;&#xff09;或者双引号&#xff08;"&#xff09;…...

AP的数据库性能到底重要吗?

先说结论&#xff1a;没那么重要。甚至可能不重要。 我用我的经历和分析给大家说说。诸位看看如何。 不重要的观点是不是不能接受&#xff1f; 因为这些是站在我们角度觉得的。而实际上使用者&#xff08;业务或者用户&#xff09;&#xff0c;真的不太在乎我们所在乎的。 …...

Vue3【二】 VSCode需要安装的Vue语法插件

VSCode需要安装的 适配Vue3的插件 Vue-Official插件安装...

设置路径别名

一、描述 如果想要给路径设置为别名&#xff0c;就是常见的有些项目前面的引入文件通过开头的&#xff0c;也就是替换了一些固定的文件路径&#xff0c;怎么配置。 二、配置 import { defineConfig } from vite import react from vitejs/plugin-react import path from path…...

人事信息管理系统(Java+MySQL)

一、项目背景 在现代企业中&#xff0c;管理大量员工的工作信息、薪资、请假、离职等事务是一项非常繁琐和复杂的任务。传统的手工管理方式不仅效率低下&#xff0c;而且容易出错。为了提高人事管理的效率&#xff0c;减少人工操作带来的错误&#xff0c;企业迫切需要一个高效…...

Python 中生成器与普通函数的区别

在Python中&#xff0c;生成器和普通函数有一些区别。 生成器使用 yield 语句从函数中返回一个值&#xff0c;而不是使用 return 语句。当生成器函数被调用时&#xff0c;它会返回一个迭代器对象&#xff0c;而非立即执行函数体内的代码。 生成器函数可以通过多次调用 yield 语…...

最小栈、栈的弹出(C++)

1.最小栈 思路分析&#xff1a; 代码&#xff1a; class MinStack { public:MinStack() {}void push(int val) {st.push(val);//两种情况需要更新最小值//1.最小栈为空(就是存最小值的那个栈)//2.插入的值小于或等于最小栈的栈顶元素if(minstack.empty()||minstack.top()>…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...