当前位置: 首页 > news >正文

在Windows上用Llama Factory微调Llama 3的基本操作

这篇博客参考了一些文章,例如:教程:利用LLaMA_Factory微调llama3:8b大模型_llama3模型微调保存-CSDN博客

也可以参考Llama Factory的Readme:GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100+ LLMsUnify Efficient Fine-Tuning of 100+ LLMs. Contribute to hiyouga/LLaMA-Factory development by creating an account on GitHub.icon-default.png?t=N7T8https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#installation首先将Llama Factory clone到本地:GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100+ LLMs 

其次创建一个conda环境:

conda create -n llama_factory python=3.10

激活环境后首先安装pytorch,具体参考这个页面:Start Locally | PyTorch,例如:

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

而后进入到LLaMA-Factory文件夹,参考其Readme,运行:

pip install -e .[torch,metrics]

同时,按照其Readme,在Windows系统上还需要运行:

pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl

具体原因我就不展开讲了。然后依次运行:

Set CUDA_VISIBLE_DEVICES=0
Set GRADIO_SHARE=1
llamafactory-cli webui

就可以看到其webui了。不过这时候还没有模型参数文件,对于国内用户而言,可以在这里https://modelscope.cn/organization/LLM-Researchicon-default.png?t=N7T8https://modelscope.cn/organization/LLM-Research

进行下载,例如可以下载Llama3中文版本(如果没有git lfs可以用前两个命令安装):

conda install git-lfs
git-lfs install
git lfs clone https://www.modelscope.cn/LLM-Research/Llama3-8B-Chinese-Chat.git

下载好之后,可以构造自己的微调数据集,具体而言,按照这里的介绍:

https://github.com/hiyouga/LLaMA-Factory/tree/main/data

Llama Factory支持alpaca and sharegpt的格式,前者类似于这种格式:

[{"instruction": "human instruction (required)","input": "human input (optional)","output": "model response (required)","system": "system prompt (optional)","history": [["human instruction in the first round (optional)", "model response in the first round (optional)"],["human instruction in the second round (optional)", "model response in the second round (optional)"]]}
]

我们构造数据集的时候,最简单的方法就是只构造instruction和output。把生成的json文件放到LLaMA-Factory\data目录下,然后打开dataset_info.json文件,增加这个文件名记录即可,例如我这里增加:

  "private_train": {
    "file_name": "private_train.json"
  },

选择自己的私有数据集,可以预览一下,然后就可以开始训练了。

训练完成后切换到Export,然后在上面的“微调方法”——“检查点路径”中选择刚才存储的目录Train_2024_xxxx之类,然后指定导出文件的目录,然后就可以导出了。

导出之后我们可以加载微调之后的模型并测试了。当然,如果训练数据集比较小的话,测试的效果也不会太好。如果大家只是想对微调效果和特定问题进行展示,可以训练模型到过拟合,呵呵呵。

就记录这么多。

相关文章:

在Windows上用Llama Factory微调Llama 3的基本操作

这篇博客参考了一些文章,例如:教程:利用LLaMA_Factory微调llama3:8b大模型_llama3模型微调保存-CSDN博客 也可以参考Llama Factory的Readme:GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100 LLMsUnify Effi…...

01——生产监控平台——WPF

生产监控平台—— 一、介绍 VS2022 .net core(net6版本) 1、文件夹:MVVM /静态资源(图片、字体等) 、用户空间、资源字典等。 2、图片资源库: https://www.iconfont.cn/ ; 1.资源字典Dictionary 1、…...

33、matlab矩阵分解汇总:LU矩阵分解、Cholesky分解和QR分解

1、LU矩阵分解 语法 语法1:[L,U] lu(A) 将满矩阵或稀疏矩阵 A 分解为一个上三角矩阵 U 和一个经过置换的下三角矩阵 L,使得 A L*U。 语法2:[L,U,P] lu(A) 还返回一个置换矩阵 P,并满足 A P*L*U。 语法3:[L,U,P] …...

C语言——使用函数创建动态内存

一、堆和栈的区别 1)栈(Stack): 栈是一种自动分配和释放内存的数据结构,存储函数的参数值、局部变量的值等。栈的特点是后进先出,即最后进入的数据最先出来,类似于我们堆盘子一样。栈的大小和生命周期是由系统自动管理的,不需要程序员手动释放。2)堆(Heap): 堆是由…...

【PL理论】(16) 形式化语义:语义树 | <Φ, S> ⇒ M | 形式化语义 | 为什么需要形式化语义 | 事实:部分编程语言的设计者并不会形式化语义

💭 写在前面:本章我们将继续探讨形式化语义,讲解语义树,然后我们将讨论“为什么需要形式化语义”,以及讲述一个比较有趣的事实(大部分编程语言设计者其实并不会形式化语义的定义)。 目录 0x00…...

前端杂谈-警惕仅引入一行代码言论

插入一行 JavaScript 代码似乎是一种无受害者犯罪。这只是一个小脚本,对吧?但 JavaScript 可以导入更多 JavaScript。-杰里米基思 “这只是一行代码”是我们经常听到的宣传语。这也可能是我们对自己和他人说的最大的谎言。 “仅用一行添加样式”&#x…...

有关cookie配置的一点记录

Domain:可以用在什么域名下,按最小化原则设Path:可以用在什么路径下,按最小化原则Max-Age和Expires:过期时间,只保留必要时间Http-Only:设置为true,这个浏览器上的JS代码将无法使用这…...

Oracle如何定位硬解析高的语句?

查询subpool 情况 select KSMDSIDX supool,round(sum(KSMSSLEN)/1024/1024,2) SQLA_size_mb from x$ksmss where KSMDSIDX<>0 and KSMSSNAMSQLA group by KSMDSIDX;查询subpool top5 SELECT *FROM (SELECT KSMDSIDX subpool,KSMSSNAM name,ROUND(KSMSSLEN / 102…...

Linux卸载残留MySQL【带图文命令巨详细】

Linux卸载残留MySQL 1、检查残留mysql2、检查并删除残留mysql依赖3、检查是否自带mariadb库 1、检查残留mysql 如果残留mysql组件&#xff0c;使用命令 rpm -e --nodeps 残留组件名 按顺序进行移除操作 #检查系统是否残留过mysql rpm -qa | grep mysql2、检查并删除残留mysql…...

4句话学习-k8s节点是如何注册到k8s集群并且kubelet拿到k8s证书的

一、kubelet拿着CSR&#xff08;签名请求&#xff09;使用的是Bootstrap token 二、ControllerManager有一个组件叫CSRAppprovingController&#xff0c;专门来Watch有没有人来使用我这个api. 三、看到有人拿着Bootstrap token的CSR来签名请求了&#xff0c;CSRAppprovingContr…...

2024全国大学生数学建模竞赛优秀参考资料分享

0、竞赛资料 优秀的资料必不可少&#xff0c;优秀论文是学习的关键&#xff0c;视频学习也非常重要&#xff0c;如有需要请点击下方名片获取。 一、赛事介绍 全国大学生数学建模竞赛(以下简称竞赛)是中国工业与应用数学学会主办的面向全国大学生的群众性科技活动&#xff0c;旨…...

QPS,平均时延和并发数

我们当前有两个服务A和B&#xff0c;想要知道哪个服务的性能更好&#xff0c;该用什么指标来衡量呢&#xff1f; 1. 单次请求时延 一种最简单的方法就是使用同一请求体同时请求两个服务&#xff0c;性能越好的服务时延越短&#xff0c;即 R T 返回结果的时刻 − 发送请求的…...

【Python核心数据结构探秘】:元组与字典的完美协奏曲

文章目录 &#x1f680;一、元组⭐1. 元组查询的相关方法❤️2. 坑点&#x1f3ac;3. 修改元组 &#x1f308;二、集合⭐1. 集合踩坑❤️2. 集合特点&#x1f4a5;无序性&#x1f4a5;唯一性 ☔3. 集合&#xff08;交&#xff0c;并&#xff0c;补&#xff09;&#x1f3ac;4. …...

Golang | Leetcode Golang题解之第137题只出现一次的数字II

题目&#xff1a; 题解&#xff1a; func singleNumber(nums []int) int {a, b : 0, 0for _, num : range nums {b (b ^ num) &^ aa (a ^ num) &^ b}return b }...

Spring和SpringBoot的特点

1.Spring的特点 1.IOC和AOP是Spring的两大核心特性&#xff0c;即控制反转和依赖注入。 2.松耦合&#xff1a;IOC和AOP两大特性可以尽可能地将对象之间的关系解耦 3.可配置&#xff1a;提供外部化配置的方式&#xff0c;可以灵活地配置容器及容器中的Bean 4.一站式&#xff1a…...

怎么使用join将数组转为逗号分隔的字符串

在JavaScript中&#xff0c;你可以使用Array.prototype.join()方法将一个数组转换为逗号分隔的字符串。join()方法接受一个可选的参数&#xff0c;该参数指定了数组元素之间的分隔符。如果不提供参数&#xff0c;则默认使用逗号&#xff08;,&#xff09;作为分隔符。 下面是一…...

Web前端博客论坛:构建、运营与用户体验的深度解析

Web前端博客论坛&#xff1a;构建、运营与用户体验的深度解析 在数字化浪潮的推动下&#xff0c;Web前端博客论坛成为了广大开发者交流技术、分享经验的重要平台。如何构建一个功能齐全、运营有序的博客论坛&#xff0c;以及如何提升用户体验&#xff0c;是摆在每一位前端开发…...

Java从入门到放弃

线程池的主要作用 线程池的设计主要是为了管理线程&#xff0c;为了让用户不需要再关系线程的创建和销毁&#xff0c;只需要使用线程池中的线程即可。 同时线程池的出现也为性能的提升做出了很多贡献&#xff1a; 降低了资源的消耗&#xff1a;不会频繁的创建、销毁线程&…...

基于51单片机的车辆动态称重系统设计

一 动态称重 所谓动态称重是指通过分析和测量车胎运动中的力,来计算该运动车辆的总重量、轴重、轮重和部分重量数据的过程。动态称重系统按经过车辆行驶的速度划分,可分为低速动态称重系统与高速动态称重系统。因为我国高速公路的限速最高是120,所以高速动态称重系统在理论…...

C语言之常用字符串函数总结、使用和模拟实现

文章目录 目录 一、strlen 的使用和模拟实现 二、strcpy 的使用及模拟实现 三、strcat 的使用和模拟实现 四、strcmp 的使用和模拟实现 五、strncpy 的使用和模拟实现 六、strncat 的使用和模拟实现 七、strncmp 的使用和模拟实现 八、strstr 的使用和模拟实现 九、st…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...