当前位置: 首页 > news >正文

【深度学习】Loss为Nan的可能原因

文章目录

  • 1. 问题情境
  • 2. 原因分析
  • 3. 导致Loss为Nan的其他可能原因

1. 问题情境

在某个网络架构下,我为某个数据项引入了一个损失函数。
这个数据项是nn.Embedding类型的,我加入的损失函数是对nn.Embedding空间做约束。
因为我在没加入优化loss前,我的nn.Embedding的数据不在同一条直线上,希望通过下面这样一个loss,约束它们在同一条直线上:
在这里插入图片描述
我的变量计算是这么写的:

embedding = self.latent_codes(idx) # 通过nn.Embedding,根据idx获得对应的latent codes
vecs = self.latent_codes.weight.data # 获得所有的latent codes
d1 = torch.sum((vecs[0].unsqueeze(0) - embedding) ** 2, dim=1).sqrt() # 计算第i个latent codes到0的距离
d2 = torch.sum((vecs[len(vecs) - 1].unsqueeze(0) - embedding) ** 2, dim=1).sqrt() # 计算第i个latent codes到-1的距离
standard_distance = torch.dist(vecs[0], vecs[len(vecs) - 1], p=2) # 计算0-(-1)的标准距离

然后loss是这么写的:

latent_space_constraint = torch.abs(d1 + d2 - standard_distance) # 约束三点在一条直线上

结果导致了loss为Nan的情况

2. 原因分析

一开始没啥头绪,然后问了一下通义千问,loss为Nan的可能原因,给出的回答是:
------------------------------------
可能是数值稳定性问题:
新损失项的计算可能导致数值下溢或上溢,特别是在涉及指数函数、对数函数或其他可能导致极端值的数学运算时。
解决方案包括添加一个小的正偏移量(例如 1e-8)来避免除以零或对零取对数,或者使用数值稳定的损失函数实现。
------------------------------------
因为上述代码中,idx=0idx=-1(此处用-1表示最后一个变量)得到的d1/d2可能为0,然后导致latent_space_constraint中对应计算结果为0,这可能是导致Nan的结果

于是我直接在loss上加了一个 λ \lambda λ

latent_space_constraint = torch.abs(d1 + d2 - standard_distance) + 1e-8

但是完全没用,还是会出现Nan的问题,于是我问的第二个问题是:解决方案包括添加一个小的正偏移量(例如 1e-8)来避免除以零或对零取对数,或者使用数值稳定的损失函数实现。这个小的正偏移量是在loss上直接加吗?,给出的回答是:
------------------------------------
在深度学习中,为了避免数值不稳定的情况,比如在损失函数中对非常接近零的数取对数或除以接近零的数,我们确实会添加一个小的正偏移量(常被称为 epsilon)。但是,这个偏移量不是直接加到整个损失函数上,而是加到可能会引起数值不稳定的部分上。

------------------------------------
那么我可能引起数值不稳定的地方实际上是d1/d2/standard_distance,所以把代码修改成在数值计算的时候加小的偏移量

embedding = self.latent_codes(idx) # 通过nn.Embedding,根据idx获得对应的latent codes
vecs = self.latent_codes.weight.data # 获得所有的latent codes
d1 = torch.sum((vecs[0].unsqueeze(0) - embedding) ** 2 + 1e-8, dim=1).sqrt() # 计算第i个latent codes到0的距离
d2 = torch.sum((vecs[len(vecs) - 1].unsqueeze(0) - embedding) ** 2 + 1e-8, dim=1).sqrt() # 计算第i个latent codes到-1的距离
standard_distance = torch.dist(vecs[0], vecs[len(vecs) - 1] + 1e-8, p=2) # 计算0-(-1)的标准距离

解决上述问题,loss计算正常,但是还要考虑的是这个loss会不会导致所有embedding趋向同一个点的情况,还要约束0和-1的latent codes不能过于相似

3. 导致Loss为Nan的其他可能原因

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
当在深度学习模型中加入新的损失项后,特定的权重或参数变为 NaN,这通常指向几个关键的问题区域。对于您的情况,pose_latent_codes 中的特定条目(索引为 0 和 5)在一轮优化后变为 NaN,可能的原因如下:

  1. 特定输入导致的数值不稳定

    • 加入的新损失项可能对某些输入特别敏感,导致计算中出现极大的数值或数值下溢,最终产生 NaN。这可能是因为输入数据中的异常值或不适当的数据预处理。
  2. 梯度爆炸

    • 特定输入或损失计算可能导致针对 pose_latent_codes 的梯度变得非常大,特别是对于索引 0 和 5 的条目。这通常发生在深度神经网络中,尤其是当网络层深且梯度在反向传播过程中累积时。
  3. 正则化或惩罚项

    • 如果新加入的损失项包含正则化项(如 L1 或 L2 正则化),并且正则化强度设置得过高,这可能对某些参数造成过度惩罚,导致 NaN。
  4. 数值计算错误

    • 在新损失项的计算中,可能有某些操作(如除以接近零的数、对负数取对数等)导致了数值不稳定,进而产生 NaN。
  5. 代码错误或实现问题

    • 实现新损失项时可能有代码错误,比如数组索引错误、维度不匹配、数据类型不一致等,这些问题在特定情况下才显现出来,例如针对 pose_latent_codes 的特定条目。

排查和解决方案:

  • 检查输入数据:确认数据预处理步骤,确保没有异常值或不合理的数据点进入模型,特别是在索引 0 和 5 的位置。

  • 梯度裁剪:在优化器中使用梯度裁剪技术,限制梯度的大小,防止梯度爆炸。

  • 降低学习率:尝试降低学习率,以减少每一步更新的幅度,使训练更加稳定。

  • 检查正则化项:如果新损失项包含正则化,尝试降低正则化系数,或检查正则化项的实现是否正确。

  • 数值稳定性改进:在损失计算中加入数值稳定性措施,比如避免除以零、使用 log-sum-exp 技巧避免数值下溢等。

  • 代码审查:仔细审查新损失项的实现代码,确保所有操作都是正确的,没有潜在的逻辑错误或数据类型不匹配。

  • 逐层检查梯度:在训练过程中打印各层的梯度,识别梯度异常增大的层,有助于定位问题所在。

通过上述步骤,您可以逐步排查并解决导致特定权重变为 NaN 的问题。在复杂模型中,问题可能不单一,需要综合多个方面的检查和调整。
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

相关文章:

【深度学习】Loss为Nan的可能原因

文章目录 1. 问题情境2. 原因分析3. 导致Loss为Nan的其他可能原因 1. 问题情境 在某个网络架构下,我为某个数据项引入了一个损失函数。 这个数据项是nn.Embedding类型的,我加入的损失函数是对nn.Embedding空间做约束。 因为我在没加入优化loss前&#x…...

解密!考研数学满分学霸的备考书单

这题我太会了,高数视频有是有真的又臭又长,我也不喜欢看 但是自己看教材,有的地方又比较难以理解,所以,这个时候一本通俗易懂的教材就显得格外重要,国内很多教材都讲的晦涩难懂,所以我给大家推…...

AI绘画工具介绍

AI绘画工具是利用人工智能技术帮助用户创作艺术作品的软件或平台。它们通常通过用户输入的描述性文字,自动解析并生成具有特定风格和主题的画作。以下是一些2024年流行的AI绘画工具的介绍: GitMind AI绘画2:一个提供多种语言界面的AI绘画生成…...

【APP逆向】央视频播放量增加,逆向全过程解密

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全…...

三星系统因何而成?或许是因为吞噬了第四颗恒星

相比于其他的类似星体,这个特殊的三星系统拥有更大更紧密的星体。 三星 天文学家发现了前所未见的三星系统。相比于其他典型的三星系统,这一三星系统拥有更大的体积,并且排列也更加紧密,这也使得这一系统更加特别。科学家推测&am…...

【MySQL】(基础篇六) —— 过滤数据

过滤数据 本文将讲授如何使用SELECT语句的WHERE子句指定搜索条件。 WHERE子句 数据库表一般包含大量的数据,很少需要检索表中所有行。通常只会根据特定操作或需要提取表数据的子集。只检索所需数据需要指定搜索条件(search criteria)&…...

利用 HTML5 Canvas 实现在线签字功能

目录 前言 一、HTML5 Canvas 简介 二、签字功能的实现 效果演示 完整代码 前言 在现代互联网应用中,有时我们需要让用户在网页上进行签字操作,比如确认文件、填写电子表格或者签署合同。利用 HTML5 的 canvas 画布,我们可以轻松地实现这一…...

GaussDB技术解读——GaussDB架构介绍(二)

上篇图文,从GaussDB关键架构目标、GaussDB分布式架构、数据计算路由层(Coordinator)关键技术方案等三方面对GaussDB架构进行了介绍。本篇将从数据持久化存取层(DataNode)关键技术方案、全局事务管理层(GTM)关键技术方案…...

EfficientNet详解

原论文名称:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 论文下载地址:https://arxiv.org/abs/1905.11946 原论文提供代码:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet 自己…...

UI前端交互的艺术:探索设计的四个维度、五个层面、六个要点与七大原则

UI前端交互的艺术:探索设计的四个维度、五个层面、六个要点与七大原则 在数字时代的浪潮中,UI前端交互设计如同一门深邃的艺术,既需要技术支撑,又需要设计灵感。它关乎用户体验,影响着产品的成败。那么,UI…...

java接口设计需要考虑哪些方面

1.签名 目的:防止数据被篡改 (1)接口请求方将请求参数、时间戳和密钥拼接成一个字符串。 (2)使用MD5等hash算法生成签名。 (3)在请求参数或请求头中增加sign参数传递给API接口。 (4&…...

Opencv图像处理

Opencv图像处理 图像阈值处理 图像阈值的处理通过cv2.threshold函数来进行处理,该函数的具体说明如下所示 ret, dst cv2.threshold(src, thresh, maxval, type) src: 输入图,只能输入单通道图像,通常来说为灰度图 dst&#x…...

LeetCode | 2879.显示前三行

在 pandas 中,可以使用 head() 方法来读取 DataFrame 的前几行数据。如果想读取指定数量的行,可以在 head() 方法中传入一个参数 n,读取前 n 行 import pandas as pddef selectFirstRows(employees: pd.DataFrame) -> pd.DataFrame:retur…...

Qt实现简易播放器

效果如图 源码地址: 简易播放器: 基于Qt的简易播放器,底层采用VLC源码 - Gitee.com GitHub:GitHub - a-mo-xi-wei/easy-player: 基于Qt的调用VLC的API的简易播放器...

适配Android12启动页

今天我们讲个什么话题呢?我们今天讲的内容是,Android12新启动页的支持API。 启动页我想大家都不陌生吧,通常的写法就是先创建一个SplashActivity,在onCreate中 Handler(Looper.getMainLooper()).postDelayed({// 在这里跳转主界…...

人工智能在医学领域的应用及技术实现

欢迎来到 Papicatch的博客 目录 🍉引言 🍉 医学影像分析 🍈技术实现 🍍数据准备 🍍模型构建 🍍模型训练 🍍模型评估 🍍应用部署 🍈示例代码 🍉 基因…...

MySQL—多表查询—练习(1)

一、引言 上几篇关于多表查询的基本几个部分全部学习完了。 多表查询的基本类型的查询包括以下: 1、内连接(隐式内连接、显示内连接):... [INNER] JOIN ... ON 条件; ) 2、外连接(左外连接、右外连接&…...

千益畅行:合法合规的旅游卡服务,打破误解

近期,千益畅行旅游卡服务引起了公众的广泛关注。然而,一些人对该服务存在误解,认为其存在某种欺诈行为。但经过深入了解和全网搜索证据,我们可以确认,千益畅行实际上是一家合法合规的旅游卡服务提供商。 千益畅行旅游…...

【Echarts系列】水平柱状图

【Echarts系列】水平柱状图 序示例数据格式代码 序 为了节省后续开发学习成本,这个系列将记录我工作所用到的一些echarts图表。 示例 水平柱状图如图所示: 数据格式 data [{name: 于洪区,value: 2736},{name: 新民市,value: 2844},{name: 皇姑区,…...

怎样把便签里的内容移到桌面?桌面便签软件使用方法

每次打开电脑,我总是被满屏的文件和图标弄得眼花缭乱。那些记录在各式各样便签里的重要事项,经常被埋没在这信息的海洋中,找起来真是头疼。想必很多人都有过这样的困扰:如何在繁杂的桌面环境中,一眼就看到自己需要提醒…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

【实施指南】Android客户端HTTPS双向认证实施指南

🔐 一、所需准备材料 证书文件(6类核心文件) 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...

VSCode 使用CMake 构建 Qt 5 窗口程序

首先,目录结构如下图: 运行效果: cmake -B build cmake --build build 运行: windeployqt.exe F:\testQt5\build\Debug\app.exe main.cpp #include "mainwindow.h"#include <QAppli...

第22节 Node.js JXcore 打包

Node.js是一个开放源代码、跨平台的、用于服务器端和网络应用的运行环境。 JXcore是一个支持多线程的 Node.js 发行版本&#xff0c;基本不需要对你现有的代码做任何改动就可以直接线程安全地以多线程运行。 本文主要介绍JXcore的打包功能。 JXcore 安装 下载JXcore安装包&a…...