【深度学习】Loss为Nan的可能原因
文章目录
- 1. 问题情境
- 2. 原因分析
- 3. 导致Loss为Nan的其他可能原因
1. 问题情境
在某个网络架构下,我为某个数据项引入了一个损失函数。
这个数据项是nn.Embedding
类型的,我加入的损失函数是对nn.Embedding
空间做约束。
因为我在没加入优化loss前,我的nn.Embedding的数据不在同一条直线上,希望通过下面这样一个loss,约束它们在同一条直线上:
我的变量计算是这么写的:
embedding = self.latent_codes(idx) # 通过nn.Embedding,根据idx获得对应的latent codes
vecs = self.latent_codes.weight.data # 获得所有的latent codes
d1 = torch.sum((vecs[0].unsqueeze(0) - embedding) ** 2, dim=1).sqrt() # 计算第i个latent codes到0的距离
d2 = torch.sum((vecs[len(vecs) - 1].unsqueeze(0) - embedding) ** 2, dim=1).sqrt() # 计算第i个latent codes到-1的距离
standard_distance = torch.dist(vecs[0], vecs[len(vecs) - 1], p=2) # 计算0-(-1)的标准距离
然后loss是这么写的:
latent_space_constraint = torch.abs(d1 + d2 - standard_distance) # 约束三点在一条直线上
结果导致了loss为Nan的情况
2. 原因分析
一开始没啥头绪,然后问了一下通义千问,loss为Nan的可能原因,给出的回答是:
------------------------------------
可能是数值稳定性问题:
新损失项的计算可能导致数值下溢或上溢,特别是在涉及指数函数、对数函数或其他可能导致极端值的数学运算时。
解决方案包括添加一个小的正偏移量(例如 1e-8)来避免除以零或对零取对数,或者使用数值稳定的损失函数实现。
------------------------------------
因为上述代码中,idx=0
或idx=-1(此处用-1表示最后一个变量)
得到的d1/d2
可能为0,然后导致latent_space_constraint
中对应计算结果为0,这可能是导致Nan的结果
于是我直接在loss上加了一个 λ \lambda λ:
latent_space_constraint = torch.abs(d1 + d2 - standard_distance) + 1e-8
但是完全没用,还是会出现Nan的问题,于是我问的第二个问题是:解决方案包括添加一个小的正偏移量(例如 1e-8)来避免除以零或对零取对数,或者使用数值稳定的损失函数实现。这个小的正偏移量是在loss上直接加吗?,给出的回答是:
------------------------------------
在深度学习中,为了避免数值不稳定的情况,比如在损失函数中对非常接近零的数取对数或除以接近零的数,我们确实会添加一个小的正偏移量(常被称为 epsilon)。但是,这个偏移量不是直接加到整个损失函数上,而是加到可能会引起数值不稳定的部分上。
…
------------------------------------
那么我可能引起数值不稳定的地方实际上是d1/d2/standard_distance
,所以把代码修改成在数值计算的时候加小的偏移量
embedding = self.latent_codes(idx) # 通过nn.Embedding,根据idx获得对应的latent codes
vecs = self.latent_codes.weight.data # 获得所有的latent codes
d1 = torch.sum((vecs[0].unsqueeze(0) - embedding) ** 2 + 1e-8, dim=1).sqrt() # 计算第i个latent codes到0的距离
d2 = torch.sum((vecs[len(vecs) - 1].unsqueeze(0) - embedding) ** 2 + 1e-8, dim=1).sqrt() # 计算第i个latent codes到-1的距离
standard_distance = torch.dist(vecs[0], vecs[len(vecs) - 1] + 1e-8, p=2) # 计算0-(-1)的标准距离
解决上述问题,loss计算正常,但是还要考虑的是这个loss会不会导致所有embedding趋向同一个点的情况,还要约束0和-1的latent codes不能过于相似
3. 导致Loss为Nan的其他可能原因
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
当在深度学习模型中加入新的损失项后,特定的权重或参数变为 NaN,这通常指向几个关键的问题区域。对于您的情况,pose_latent_codes
中的特定条目(索引为 0 和 5)在一轮优化后变为 NaN,可能的原因如下:
-
特定输入导致的数值不稳定:
- 加入的新损失项可能对某些输入特别敏感,导致计算中出现极大的数值或数值下溢,最终产生 NaN。这可能是因为输入数据中的异常值或不适当的数据预处理。
-
梯度爆炸:
- 特定输入或损失计算可能导致针对
pose_latent_codes
的梯度变得非常大,特别是对于索引 0 和 5 的条目。这通常发生在深度神经网络中,尤其是当网络层深且梯度在反向传播过程中累积时。
- 特定输入或损失计算可能导致针对
-
正则化或惩罚项:
- 如果新加入的损失项包含正则化项(如 L1 或 L2 正则化),并且正则化强度设置得过高,这可能对某些参数造成过度惩罚,导致 NaN。
-
数值计算错误:
- 在新损失项的计算中,可能有某些操作(如除以接近零的数、对负数取对数等)导致了数值不稳定,进而产生 NaN。
-
代码错误或实现问题:
- 实现新损失项时可能有代码错误,比如数组索引错误、维度不匹配、数据类型不一致等,这些问题在特定情况下才显现出来,例如针对
pose_latent_codes
的特定条目。
- 实现新损失项时可能有代码错误,比如数组索引错误、维度不匹配、数据类型不一致等,这些问题在特定情况下才显现出来,例如针对
排查和解决方案:
-
检查输入数据:确认数据预处理步骤,确保没有异常值或不合理的数据点进入模型,特别是在索引 0 和 5 的位置。
-
梯度裁剪:在优化器中使用梯度裁剪技术,限制梯度的大小,防止梯度爆炸。
-
降低学习率:尝试降低学习率,以减少每一步更新的幅度,使训练更加稳定。
-
检查正则化项:如果新损失项包含正则化,尝试降低正则化系数,或检查正则化项的实现是否正确。
-
数值稳定性改进:在损失计算中加入数值稳定性措施,比如避免除以零、使用 log-sum-exp 技巧避免数值下溢等。
-
代码审查:仔细审查新损失项的实现代码,确保所有操作都是正确的,没有潜在的逻辑错误或数据类型不匹配。
-
逐层检查梯度:在训练过程中打印各层的梯度,识别梯度异常增大的层,有助于定位问题所在。
通过上述步骤,您可以逐步排查并解决导致特定权重变为 NaN 的问题。在复杂模型中,问题可能不单一,需要综合多个方面的检查和调整。
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
相关文章:

【深度学习】Loss为Nan的可能原因
文章目录 1. 问题情境2. 原因分析3. 导致Loss为Nan的其他可能原因 1. 问题情境 在某个网络架构下,我为某个数据项引入了一个损失函数。 这个数据项是nn.Embedding类型的,我加入的损失函数是对nn.Embedding空间做约束。 因为我在没加入优化loss前&#x…...

解密!考研数学满分学霸的备考书单
这题我太会了,高数视频有是有真的又臭又长,我也不喜欢看 但是自己看教材,有的地方又比较难以理解,所以,这个时候一本通俗易懂的教材就显得格外重要,国内很多教材都讲的晦涩难懂,所以我给大家推…...
AI绘画工具介绍
AI绘画工具是利用人工智能技术帮助用户创作艺术作品的软件或平台。它们通常通过用户输入的描述性文字,自动解析并生成具有特定风格和主题的画作。以下是一些2024年流行的AI绘画工具的介绍: GitMind AI绘画2:一个提供多种语言界面的AI绘画生成…...

【APP逆向】央视频播放量增加,逆向全过程解密
✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全…...

三星系统因何而成?或许是因为吞噬了第四颗恒星
相比于其他的类似星体,这个特殊的三星系统拥有更大更紧密的星体。 三星 天文学家发现了前所未见的三星系统。相比于其他典型的三星系统,这一三星系统拥有更大的体积,并且排列也更加紧密,这也使得这一系统更加特别。科学家推测&am…...

【MySQL】(基础篇六) —— 过滤数据
过滤数据 本文将讲授如何使用SELECT语句的WHERE子句指定搜索条件。 WHERE子句 数据库表一般包含大量的数据,很少需要检索表中所有行。通常只会根据特定操作或需要提取表数据的子集。只检索所需数据需要指定搜索条件(search criteria)&…...

利用 HTML5 Canvas 实现在线签字功能
目录 前言 一、HTML5 Canvas 简介 二、签字功能的实现 效果演示 完整代码 前言 在现代互联网应用中,有时我们需要让用户在网页上进行签字操作,比如确认文件、填写电子表格或者签署合同。利用 HTML5 的 canvas 画布,我们可以轻松地实现这一…...

GaussDB技术解读——GaussDB架构介绍(二)
上篇图文,从GaussDB关键架构目标、GaussDB分布式架构、数据计算路由层(Coordinator)关键技术方案等三方面对GaussDB架构进行了介绍。本篇将从数据持久化存取层(DataNode)关键技术方案、全局事务管理层(GTM)关键技术方案…...
EfficientNet详解
原论文名称:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 论文下载地址:https://arxiv.org/abs/1905.11946 原论文提供代码:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet 自己…...
UI前端交互的艺术:探索设计的四个维度、五个层面、六个要点与七大原则
UI前端交互的艺术:探索设计的四个维度、五个层面、六个要点与七大原则 在数字时代的浪潮中,UI前端交互设计如同一门深邃的艺术,既需要技术支撑,又需要设计灵感。它关乎用户体验,影响着产品的成败。那么,UI…...
java接口设计需要考虑哪些方面
1.签名 目的:防止数据被篡改 (1)接口请求方将请求参数、时间戳和密钥拼接成一个字符串。 (2)使用MD5等hash算法生成签名。 (3)在请求参数或请求头中增加sign参数传递给API接口。 (4&…...

Opencv图像处理
Opencv图像处理 图像阈值处理 图像阈值的处理通过cv2.threshold函数来进行处理,该函数的具体说明如下所示 ret, dst cv2.threshold(src, thresh, maxval, type) src: 输入图,只能输入单通道图像,通常来说为灰度图 dst&#x…...

LeetCode | 2879.显示前三行
在 pandas 中,可以使用 head() 方法来读取 DataFrame 的前几行数据。如果想读取指定数量的行,可以在 head() 方法中传入一个参数 n,读取前 n 行 import pandas as pddef selectFirstRows(employees: pd.DataFrame) -> pd.DataFrame:retur…...

Qt实现简易播放器
效果如图 源码地址: 简易播放器: 基于Qt的简易播放器,底层采用VLC源码 - Gitee.com GitHub:GitHub - a-mo-xi-wei/easy-player: 基于Qt的调用VLC的API的简易播放器...
适配Android12启动页
今天我们讲个什么话题呢?我们今天讲的内容是,Android12新启动页的支持API。 启动页我想大家都不陌生吧,通常的写法就是先创建一个SplashActivity,在onCreate中 Handler(Looper.getMainLooper()).postDelayed({// 在这里跳转主界…...

人工智能在医学领域的应用及技术实现
欢迎来到 Papicatch的博客 目录 🍉引言 🍉 医学影像分析 🍈技术实现 🍍数据准备 🍍模型构建 🍍模型训练 🍍模型评估 🍍应用部署 🍈示例代码 🍉 基因…...

MySQL—多表查询—练习(1)
一、引言 上几篇关于多表查询的基本几个部分全部学习完了。 多表查询的基本类型的查询包括以下: 1、内连接(隐式内连接、显示内连接):... [INNER] JOIN ... ON 条件; ) 2、外连接(左外连接、右外连接&…...
千益畅行:合法合规的旅游卡服务,打破误解
近期,千益畅行旅游卡服务引起了公众的广泛关注。然而,一些人对该服务存在误解,认为其存在某种欺诈行为。但经过深入了解和全网搜索证据,我们可以确认,千益畅行实际上是一家合法合规的旅游卡服务提供商。 千益畅行旅游…...

【Echarts系列】水平柱状图
【Echarts系列】水平柱状图 序示例数据格式代码 序 为了节省后续开发学习成本,这个系列将记录我工作所用到的一些echarts图表。 示例 水平柱状图如图所示: 数据格式 data [{name: 于洪区,value: 2736},{name: 新民市,value: 2844},{name: 皇姑区,…...

怎样把便签里的内容移到桌面?桌面便签软件使用方法
每次打开电脑,我总是被满屏的文件和图标弄得眼花缭乱。那些记录在各式各样便签里的重要事项,经常被埋没在这信息的海洋中,找起来真是头疼。想必很多人都有过这样的困扰:如何在繁杂的桌面环境中,一眼就看到自己需要提醒…...

Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...