【机器学习】生成对抗网络 (Generative Adversarial Networks | GAN)
生成对抗网络 (Generative Adversarial Networks | GAN)
介绍
生成对抗网络 (Generative Adversarial Networks,简称GAN) 是一种强大的深度学习模型,用于生成具有逼真感的图像、音频和文本等内容。GAN 的核心理念是通过训练两个神经网络,生成器 (Generator) 和判别器 (Discriminator),它们相互对抗、相互学习,以提高生成器生成数据的质量。本文将介绍GAN的基本原理、工作流程以及应用场景,旨在为新手小白提供一个简单易懂的入门指南。
原理
GAN 的原理源于博弈论中的对抗思想。生成器的目标是生成尽可能逼真的数据,而判别器的目标是尽可能准确地区分真实数据和生成器生成的数据。二者通过对抗性训练不断优化自身,最终达到动态平衡。
工作流程
-
生成器 (Generator): 首先,生成器接收一个随机噪声向量作为输入,通过神经网络逐渐将其转换成与真实数据相似的图像。初始阶段生成的图像可能非常模糊和不真实。
-
判别器 (Discriminator): 同时,判别器接收两种类型的输入:真实数据和由生成器生成的数据。其目标是区分这两种数据,并输出概率值,表示输入数据为真实数据的可能性。
-
对抗训练 (Adversarial Training): 在训练过程中,生成器和判别器相互竞争、相互学习。生成器试图生成更逼真的数据以愚弄判别器,而判别器则努力提高自己的识别能力以区分真假数据。
-
优化过程: 通过梯度下降等优化算法,不断更新生成器和判别器的参数,使其逐渐达到动态平衡。当生成器生成的数据足够逼真,判别器无法准确区分真假数据时,GAN 达到了训练目标。
应用场景
-
图像生成: GAN 可用于生成逼真的人脸、风景等图像,甚至可以用于艺术创作和特效生成。
-
图像修复: GAN 可以通过学习图像的生成规律,修复受损或缺失的图像部分,如去除图片中的水印、修复老照片等。
-
视频生成: 基于 GAN 的模型可以生成连续的图像序列,用于视频合成和特效制作。
-
自然语言处理: GAN 可以用于生成文本、对话等自然语言内容,如生成对话、文章摘要等。
-
医学影像处理: GAN 在医学影像处理中也有广泛应用,如生成医学影像数据、辅助诊断等。
结论
生成对抗网络是一种强大而灵活的深度学习模型,可以应用于多个领域,生成逼真的图像、音频和文本等内容。尽管其训练和调参过程较为复杂,但通过深入学习和实践,可以充分发挥其潜力,为各种任务提供创新的解决方案。
希望本文能够为初学者提供一个清晰的入门指南,帮助他们更好地理解生成对抗网络的基本原理和应用场景。
相关文章:
【机器学习】生成对抗网络 (Generative Adversarial Networks | GAN)
生成对抗网络 (Generative Adversarial Networks | GAN) 介绍 生成对抗网络 (Generative Adversarial Networks,简称GAN) 是一种强大的深度学习模型,用于生成具有逼真感的图像、音频和文本等内容。GAN 的核心理念是通过训练两个神经网络,生…...
[ADS信号完整性分析]深入理解IBIS AMI模型设计:从基础到实践
在高速数字设计领域,信号完整性(SI)分析对于确保系统性能至关重要。IBIS AMI(Algorithmic Model Interface)模型作为一种强大的工具,能够帮助设计师在系统层面上评估和优化SERDES(串行器/解串器…...
Plotly : 超好用的Python可视化工具
文章目录 安装:开始你的 Plotly 之旅基本折线图:简单却强大的起点带颜色的散点图:数据的多彩世界三维曲面图:探索数据的深度气泡图:让世界看到你的数据小提琴图:数据分布的优雅展现旭日图:分层数…...
Linux电话本的编写-shell脚本编写
该电话本可以实现以下功能 1.添加用户 2.查询用户 3.删除用户 4.展示用户 5.退出 代码展示: #!/bin/bash PHONEBOOKphonebook.txt function add_contact() { echo "Adding new contact..." read -p "Enter name: " name …...
蓝牙开发 基础知识
零、基础知识 0.1、Android 应用可通过 Bluetooth API 执行以下操作 扫描其他蓝牙设备查询本地蓝牙适配器的配对蓝牙设备建立 RFCOMM 通道通过服务发现连接到其他设备与其他设备进行双向数据传输管理多个连接 0.2、蓝牙进行通信的四大必需任务 设置蓝牙查找局部区域内的配对…...
QNX 7.0.0开发总结
1 QNX编译 1.1 基本概念 QNX可以直接使用Linux Makefile编译库和二进制,在Makefile文件中指定CCaarch64-unknown-nto-qnx7.0.0-g,或者CCx86_64-pc-nto-qnx7.0.0-g,保存退出后,运行source /qnx_sdk_path/qnxsdp-env.sh,…...
Golang使用讯飞星火AI接口
一、API申请 https://www.bilibili.com/video/BV1Yw411m7Rs/?spm_id_from333.337.search-card.all.click&vd_source707ec8983cc32e6e065d5496a7f79ee6 注册申请,需要在此页面获取appid、apisecret、apikey https://www.xfyun.cn/ https://console.xfyun.cn/ser…...
矫正儿童发音好帮手
《言语构音语音训练手册——下颌、唇部、舌部构音运动障碍》教辅书 儿童言语构音语音问题越来越受到家长的关注,大多数家长受到儿童说话晚、口齿不清、发音错误等问题的困扰,国外报道2岁儿童言语构音语音障碍达到17%,3岁达4%~7.5%࿰…...
wordpress主题导航主题v4.16.2哈哈版
1.下载授权接口源码onenav-auth-api-v2.zip ,在宝塔新建一个网站,域名为 auth.iotheme.cn,设置wordpress伪静态,申请ssl证书。将上面源码解压后上传到此网站根目录。 2. 在宝塔根目录etc下 hosts 中添加 127.0.0.1 auth.iotheme.…...
内存分布图
1.基本数据类型和常量存放在常量池中。 2.类的成员存放在堆中,如果成员是其他类对象也存放在堆中 3.数组和数组的内容放在堆中 4.类对象存放在栈中。 5.单独的对象存放在栈中。 6.引用数据类型存放在堆或栈中。 Java中对象到底存在堆中还是栈中_java对象在堆还…...
如何发布自己的NPM插件包?
安装 Node.js : 如果没有安装的,Nodejs下载安装:http://nodejs.cn/download/ 首先确保你已经安装了 Node.js 和 npm。你可以通过运行以下命令来检查是否已经安装: node -v npm -v初始化项目: 创建一个新的项目文件夹…...
计算广告读书杂记-待整理
不知不觉已经在字节干了两年多广告研发,也跳槽去了一家广告公司继续深耕,借着这个劲,重新读一遍《计算广告》这本书,并将一些重点概念进行记录。...
No module named _sqlite3解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...
防飞单,赢市场:售楼处客流统计管理新篇章
在竞争激烈的房地产市场中,售楼处作为楼盘销售的重要窗口,其管理效率和服务质量直接关系到楼盘的销售业绩和品牌形象。然而,传统的客户人数统计方式往往存在诸多不足,如数据不准确、统计效率低下等,这些问题给售楼处的…...
LeetCode:419. 甲板上的战舰(遍历 Java)
目录 419. 甲板上的战舰 题目描述: 实现代码与解析: 遍历 原理思路: 419. 甲板上的战舰 题目描述: 给你一个大小为 m x n 的矩阵 board 表示甲板,其中,每个单元格可以是一艘战舰 X 或者是一个空位 . &…...
【python】OpenCV—Blob Detection(11)
学习来自OpenCV基础(10)使用OpenCV进行Blob检测 文章目录 1、cv2.SimpleBlobDetector_create 中文文档2、默认 parameters3、配置 parameters附录——cv2.drawKeypoints 1、cv2.SimpleBlobDetector_create 中文文档 cv2.SimpleBlobDetector_create 是 O…...
【C++】 基础复习 | 数据类型,输入,输出流 scanf printf
文章目录 1 基本数据类型1.1 基本数据类型1.2 构造类型1.3 指针类型(Pointers) 2 基础输入输出2.1 通过输入输出操作符>> <<2.2 通过scanf和printf输入和输出2.2.1 输出printf 函数2.2.2 输出scanf 函数2.2.3 注意事项 1 基本数据类型 了解…...
linux pxe和无人值守
一 PXE和无人值守 pxe c/s模式 允许客户端通过网络从远程服务器(服务端)下载引导镜像 加载安装文件 实现自动化安装操作系统 无人值守 就是安装选项不需要认为干预 可以自动化实现 pxe的优点 1 规模化 同时装配多台服务器 20多 30台 2 自动化 …...
Questflow借助MongoDB Atlas以AI重新定义未来工作方式
MongoDB客户案例导读 Questflow借助MongoDB Atlas赋能AI员工,助力中小型初创企业自动化工作流程,简化数据分析,提升客户体验,推动AI与员工的协作,重新定义未来工作方式。 协作式AI自动化平台 无需编码即可拥有自己的…...
数值计算精度问题(浮点型和双整型累加精度测试)
这篇博客介绍双整型和浮点数累加精度问题,运动控制轨迹规划公式有大量对时间轴的周期累加过程,如果我们采用浮点数进行累加,势必会影响计算精度。速度的不同 进一步影响位置积分运算。轨迹规划相关问题请参考下面系列文章,这里不再赘述: 1、博途PLC 1200/1500PLC S型速度曲…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
门静脉高压——表现
一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...
宠物车载安全座椅市场报告:解读行业趋势与投资前景
一、什么是宠物车载安全座椅? 宠物车载安全座椅是一种专为宠物设计的车内固定装置,旨在保障宠物在乘车过程中的安全性与舒适性。它通常由高强度材料制成,具备良好的缓冲性能,并可通过安全带或ISOFIX接口固定于车内。 近年来&…...
从数据报表到决策大脑:AI重构电商决策链条
在传统电商运营中,决策链条往往止步于“数据报表层”:BI工具整合历史数据,生成滞后一周甚至更久的销售分析,运营团队凭经验预判需求。当爆款突然断货、促销库存积压时,企业才惊觉标准化BI的决策时差正成为增长瓶颈。 一…...
Spring AI中使用ChatMemory实现会话记忆功能
文章目录 1、需求2、ChatMemory中消息的存储位置3、实现步骤1、引入依赖2、配置Spring AI3、配置chatmemory4、java层传递conversaionId 4、验证5、完整代码6、参考文档 1、需求 我们知道大型语言模型 (LLM) 是无状态的,这就意味着他们不会保…...
2025年全国I卷数学压轴题解答
第19题第3问: b b b 使得存在 t t t, 对于任意的 x x x, 5 cos x − cos ( 5 x t ) < b 5\cos x-\cos(5xt)<b 5cosx−cos(5xt)<b, 求 b b b 的最小值. 解: b b b 的最小值 b m i n min t max x g ( x , t ) b_{min}\min_{t} \max_{x} g(x,t) bmi…...
