线性数据结构-队列
队列(Queue)是一种先进先出(First In First Out, FIFO)的数据结构,它按照元素进入的顺序来处理元素。队列的基本操作包括:
- enqueue:在队列的末尾添加一个元素。
- dequeue:移除队列的第一个元素,并返回被移除的元素。
- front 或 peek:返回队列的第一个元素,但不移除它。
- isEmpty:检查队列是否为空。
- size:返回队列中元素的数量。
数组实现队列
- 内存连续性:数组在内存中是连续分配的,这有助于利用现代处理器的缓存机制,提高访问速度。
- 动态扩容:数组需要预先定义大小或动态扩容。动态扩容涉及到创建新数组并复制旧数组元素的操作,这个操作的时间复杂度为O(n)。
- 插入和删除操作:在队列末尾插入元素(enqueue)的时间复杂度为O(1),但在队列开头删除元素(dequeue)时,由于需要移动所有后续元素,时间复杂度也为O(n)。不过,如果只在数组末尾进行操作,这个复杂度可以降低到O(1)。
class Queue {contructor(){this._queue = [];}isEmty() {return this._queue.length === 0;}enqueue(value) {this._queue.push(value);}dequeue() {if (this.isEmty()) {return undefined;}return this._queue.shift();}size() {return this._queue.length;}peek() {if (this.isEmty()) {return undefined;}return this._queue[0];}
}
链表实现队列
- 内存分配:链表节点在内存中可以分散分配,不需要连续的内存空间。
- 动态大小:链表可以根据需要动态地分配节点,不需要担心扩容问题。
- 插入和删除操作:在链表队列的末尾插入元素(enqueue)和从头部删除元素(dequeue)的时间复杂度都为O(1),因为只需要改变指针的指向。
- 额外开销:链表操作涉及到额外的指针操作,可能会有一些性能开销,尤其是在js中,对象和指针的处理通常比原始数据类型慢。
class Node {constructor(value){this.value = value;this.next = null;}
}class Queue {contructor(){this._front = nullthis._rear = nullthis._size = 0}isEmty() {return this._size === 0;}size() {return this._size;}dequeue() {if (this.isEmty()) {return undefined;}this._size--const removeNode = this._frontthis._front = this._front.nextif (this.isEmty()) {this._rear = null}return removeNode.value;}enqueue(value) {const newNode = new Node(value)if (this.isEmty()) {this._front = newNodethis._rear = newNode} else {this._rear.next = newNodethis._rear = newNode}this._size++}peek() {if (this.isEmty()) {return undefined;}return this._front.value;}
}
相关文章:
线性数据结构-队列
队列(Queue)是一种先进先出(First In First Out, FIFO)的数据结构,它按照元素进入的顺序来处理元素。队列的基本操作包括: enqueue:在队列的末尾添加一个元素。dequeue:移除队列的第…...
python脚本将视频抽帧为图像数据集
AI应用开发相关目录 本专栏包括AI应用开发相关内容分享,包括不限于AI算法部署实施细节、AI应用后端分析服务相关概念及开发技巧、AI应用后端应用服务相关概念及开发技巧、AI应用前端实现路径及开发技巧 适用于具备一定算法及Python使用基础的人群 AI应用开发流程概…...
Xmind导入纯文本TXT方法
最近有很多同事咨询我如何在xmind直接导入纯文本txt笔记或者思维导图呢? 解决办法如下: 1.先打开xmind随便打开一个思维导图-文件-导出-marldown 2.选中导出的markdown文件。右键-打开方式-苹果系统选择文本编辑,Win系统选择记事本 3.按照图示…...
深度学习在老年痴呆检测中的应用:数据集综述
深度学习在老年痴呆检测中的应用:数据集综述 引言 老年痴呆(Alzheimer’s Disease, AD)是一种神经退行性疾病,主要影响老年人,导致记忆力、认知能力和行为的逐步衰退。早期检测和诊断对于延缓疾病进展、提高患者生活质量至关重要。近年来,深度学习技术在医学影像分析和…...
【FreeRTOS】内存管理笔记
一、为什么要自己实现内存管理? 后续的章节涉及这些内核对象:task、queue、semaphores和event group等。为了让FreeRTOS更容 易使用,这些内核对象一般都是动态分配:用到时分配,不使用时释放。使用内存的动态管理功能&…...
【数据结构】二叉树:一场关于节点与遍历的艺术之旅
专栏引入 哈喽大家好,我是野生的编程萌新,首先感谢大家的观看。数据结构的学习者大多有这样的想法:数据结构很重要,一定要学好,但数据结构比较抽象,有些算法理解起来很困难,学的很累。我想让大家…...
arm系统中双网卡共存问题
文章目录 单网卡单独运行双网卡共存问题双网卡解决方案方案一方案二方案三验证双网卡通过网卡名获取IP通过TCP与服务端通信参考单网卡单独运行 双网卡共存问题 双网卡解决方案 方案一 https://blog.csdn.net/HowieXue/article/details/75937972 方案二 http://bbs.witech…...
IDEA创建Mybatis项目
IDEA创建Mybatis项目 第一步:创建库表 -- 创建数据库 create database mybatis_db;-- 使用数据库 use mybatis_db;-- 创建user表 CREATE TABLE user (id INT AUTO_INCREMENT PRIMARY KEY,username VARCHAR(50) NOT NULL,password VARCHAR(50) NOT NULL,email VARC…...
排序---快速排序
前言 个人小记 一、代码 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #define MAX_ARR 100000 #define swap(a,b)\ {\__typeof(a) __ca;\ab,b__c;\ } #define TEST(func ,arr,l,r)\ {\int nr-l;\printf("tes…...
#08【面试问题整理】嵌入式软件工程师
前言 本系列博客主要记录有关嵌入式方面的面试重点知识,本系列已经更新的篇目有如下: 1.1进程线程的基本概念 1.2 并发,同步,异步,互斥,阻塞,非阻塞的理解 1.3 孤儿进程、僵尸进程、守护进程的概念 3.1 TCP UDP 【本篇】3.2 三次握手、四次挥手...
统计绘图 | 一行代码教你绘制顶级期刊要求配图
在分享完即可统计又可可视化绘制的优秀可视化包后(具体内容可看 统计绘图 | 既能统计分析又能可视化绘制的技能 。就有小伙伴私信问我需要绘制出版级别的可视化图表有什么快速的方法?“。鉴于我是一个比较宠粉的小编,几天就给大家推荐一个技巧࿰…...
[ue5]建模场景学习笔记(6)——必修内容可交互的地形,交互沙(4)
1.需求分析: 现在我们已经有了可以在世界内近于无限的跑动痕迹,现在需要对痕迹进行细化,包括例如当人物跳起时便不再绘制痕迹,以及痕迹应该存在深浅,应该由两只脚分别绘制,同时也应该对地面材质进行进一步处…...
5.2 参照完整性
5.2.1 外键约束 语法格式:constraint < symbol > foreign key ( col_nam1[, col_nam2... ] ) references table_name (col_nam1[, col_nam2...]) [ on delete { restrict | cascade | set null | no action } ] [ on update { restrict | cascade | set nu…...
SpringCache 缓存 - @Cacheable、@CacheEvict、@CachePut、@Caching、CacheConfig 以及优劣分析
目录 SpringCache 缓存 环境配置 1)依赖如下 2)配置文件 3)设置缓存的 value 序列化为 JSON 格式 4)EnableCaching 实战开发 Cacheable CacheEvict CachePut Caching CacheConfig SpringCache 的优势和劣势 读操作…...
数据结构 —— 堆
1.堆的概念及结构 堆是一种特殊的树形数据结构,称为“二叉堆”(binary heap) 看它的名字也可以看出堆与二叉树有关系:其实堆就是一种特殊的二叉树 堆的性质: 堆中某个结点的值总是不大于或不小于其父结点的值&…...
【运维】如何更换Ubuntu默认的Python版本,update-alternatives如何使用
update-alternatives 是一个在 Debian 及其衍生发行版中(包括 Ubuntu)用于管理系统中可替代项的命令。它可以用于在系统中设置默认的软件版本,例如在不同版本的软件之间进行切换,比如不同的 Python 版本。 要在 Ubuntu 中使用 up…...
2024 年适用于 Linux 的 5 个微软 Word 替代品
对于那些最近由于隐私问题或其他原因而转向 Linux 的用户来说,可能很难替换他们最喜欢的、不在 Linux 操作系统上运行的应用程序。 寻找流行程序的合适替代品可能会成为一项挑战,而且并不是每个人都准备好花费大量时间来尝试弄清楚什么可以与他们在 Win…...
大模型日报2024-06-12
大模型日报 2024-06-12 大模型资讯 NVIDIA发布GB200 Grace Blackwell AI超级芯片 摘要: NVIDIA近日宣布推出GB200 Grace Blackwell超级芯片和Blackwell B200 GPU,这些新技术将推动人工智能领域的发展。 阿布扎比TII发布下一代Falcon语言模型 摘要: 阿布扎比的技术创…...
LVGL欢乐桌球游戏(LVGL+2D物理引擎学习案例)
LVGL欢乐桌球游戏(LVGL2D物理引擎学习案例) 视频效果: https://www.bilibili.com/video/BV1if421X7DL...
国产数字证书大品牌——JoySSL
一、品牌介绍 网盾安全旗下品牌JoySSL是专业的https安全方案服务商,业务涉及网络安全技术服务、安全防护系统集成、数据安全软件开发等。网盾安全以网络安全为己任,携手GlobalSign、DigiCert 、Sectigo等全球数家权威知名SSL证书厂商,加速ht…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
