当前位置: 首页 > news >正文

我的创作纪念日-在SCDN的5年

机缘

五年前,一个偶然的机会让我接触到了SCDN这个充满活力和创造力的社区。我抱着对技术的热爱和对知识的渴望,决定在这里开启我的创作之旅。最初,我成为创作者的初心,是希望将自己在实战项目中的经验、日常学习过程中的点滴,以及技术上的见解和心得,与更多人分享。这种分享不仅让我获得了成长,也使我感受到了与他人交流知识的快乐。

收获

在SCDN的五年里,我收获了无数的宝贵财富。首先,我的文章吸引了数万名粉丝的关注,他们的每一次点赞、评论和转发都是对我努力的肯定,也是我继续前行的动力源泉。他们的反馈让我深感自己的努力得到了认可,也让我更加明白了写作的价值和意义。

其次,这五年的创作让我积累了丰富的经验和知识。我不仅学会了如何更好地组织和表达自己的想法,还深入了解了各种技术细节和实现方法。这些经验和知识不仅提升了我的技术水平,也为我未来的职业发展奠定了坚实的基础。

此外,我还结识了许多志同道合的领域同行。他们中有的是我的粉丝,有的是通过我的文章认识的志同道合的朋友。我们一起探讨技术难题、分享学习心得、互相支持和鼓励。这些交流和合作不仅让我收获了更多的知识和经验,也让我感受到了技术社区的温暖和力量。

最后,这五年的创作也让我深刻体会到了知识的力量和分享的价值。我深知自己的成长和进步离不开他人的帮助和支持,因此我也愿意将自己的经验和知识分享给更多的人。我相信,通过分享和交流,我们可以共同推动技术的发展和创新,为整个社会带来更多的价值。

成就

在过去的五年里,我编写了许多代码,其中有一段用于复杂数据分析的Python代码是我最为骄傲的成就。这段代码不仅处理数据的能力强大,而且具备高度的灵活性和可扩展性。以下是这段代码的详细展示:


python
# 这是一个复杂的数据分析处理代码示例  
import pandas as pd  
import numpy as np  
import matplotlib.pyplot as plt  
from sklearn.preprocessing import StandardScaler  
from sklearn.decomposition import PCA  # 假设我们有一个名为'data.csv'的数据集  
df = pd.read_csv('data.csv')  # 数据标准化  
scaler = StandardScaler()  
scaled_data = scaler.fit_transform(df[['feature1', 'feature2', 'feature3']])  # 使用PCA进行降维  
pca = PCA(n_components=2)  
principalComponents = pca.fit_transform(scaled_data)  # 绘制降维后的数据分布图  
plt.figure(figsize=(8, 6))  
plt.scatter(principalComponents[:, 0], principalComponents[:, 1], c=df['target'])  
plt.xlabel('Principal Component 1')  
plt.ylabel('Principal Component 2')  
plt.title('PCA of Dataset')  
plt.show()  # 它展示了我在数据处理和分析方面的能力,也体现了我对技术的深入理解和应用

这段代码不仅解决了我在工作中的实际问题,还得到了同事和同行们的高度评价。它让我深刻体会到了编程的魅力和价值,也让我更加坚定了在技术领域不断追求卓越的决心。

以下是一个我日常工作中使用的代码示例,它展示了我对深度学习的应用:

# 导入所需的库  
import tensorflow as tf  
from tensorflow.keras.datasets import mnist  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D  # 加载MNIST数据集  
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()  # 数据预处理:将像素值缩放到0-1之间,并添加颜色通道维度  
train_images = train_images / 255.0  
test_images = test_images / 255.0  
train_images = train_images[..., tf.newaxis]  
test_images = test_images[..., tf.newaxis]  # 构建卷积神经网络模型  
model = Sequential([  Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),  MaxPooling2D((2, 2)),  Conv2D(64, (3, 3), activation='relu'),  MaxPooling2D((2, 2)),  Conv2D(64, (3, 3), activation='relu'),  Flatten(),  Dense(64, activation='relu'),  Dense(10)  
])  # 编译模型  
model.compile(optimizer='adam',  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),  metrics=['accuracy'])  # 训练模型  
model.fit(train_images, train_labels, epochs=5)  # 评估模型  
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)  
print('\nTest accuracy:', test_acc)

这个代码示例展示了如何使用TensorFlow库构建和训练一个简单的卷积神经网络模型,用于MNIST手写数字分类任务。虽然这个示例相对简单,但它涵盖了深度学习模型构建和训练的基本步骤,包括数据加载、预处理、模型定义、编译和训练等。

憧憬

首先,我渴望在技术领域不断突破自我,掌握更多的前沿技术和方法。随着人工智能、大数据、云计算等技术的快速发展,我相信未来将有更多的机会和挑战等待着我。我将努力学习和掌握这些新技术,将其应用到实际项目中,为企业和社会创造更多的价值。

其次,我希望能够将自己的知识和经验分享给更多的人,帮助他们解决技术难题和实现个人成长。我计划通过撰写更多的技术博客、参与开源项目、举办技术讲座等方式,将自己的经验和见解分享给更多的人。我相信,通过分享和交流,我们可以共同推动技术的进步和创新,为整个社区的发展贡献自己的力量。

此外,我还希望能够与更多的同行和导师建立联系和合作。我深知自己在技术领域还有很多不足和需要学习的地方,因此我希望能够借助他们的力量,不断提升自己的能力和水平。通过与他们的交流和合作,我相信我能够更快地成长和进步。我相信,在未来的日子里,我会在SCDN社区收获更多的成长和喜悦。

相关文章:

我的创作纪念日-在SCDN的5年

机缘 五年前,一个偶然的机会让我接触到了SCDN这个充满活力和创造力的社区。我抱着对技术的热爱和对知识的渴望,决定在这里开启我的创作之旅。最初,我成为创作者的初心,是希望将自己在实战项目中的经验、日常学习过程中的点滴&…...

AI-知识库搭建(二)GPT-Embedding模型使用

上一篇:AI-知识库搭建(一)腾讯云向量数据库使用-CSDN博客 一、Embedding模型 Embedding模型是一种将高维度的离散数据(如文本、图像、音频等)映射到低维度的连续向量空间的技术。这种技术广泛应用于自然语言处理&…...

qt网络事件之QSocketNotifier

简介 QSocketNotifier用于处理网络事件的,即事件处理器 结构 #mermaid-svg-xcNdAyHNkKqNCLQY {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-xcNdAyHNkKqNCLQY .error-icon{fill:#552222;}#mermaid-svg-xcNdAyHNk…...

如何统计EXCEL中的数据透视表的信息?

也没什么可分析的,直接上代码,看看是不是你需要的: Sub GetPVT() 定义一个1000行的数组,如果你预判工作簿中数据透视表数量可能大小1000,那就改成10000,甚至10万,以确保能大于数据透视表数量即…...

日本结构型产品及衍生品业务变迁报告

日本结构型产品及衍生品业务变迁报告 一、业务发展阶段 阶段一:2000年之前 零售结构型产品几乎不存在,主要销售对象为机构投资者或企业。主要策略为卖出看涨期权(covered call)。会计记录准则对业务有重要影响,例如…...

解决Mac无法上网/网络异常的方法,重置网络

解放方法 1、前往文件夹:/Library/Preferences/SystemConfiguration 2 、在弹窗中输入上边的地址 3 、把文件夹中除了下图未选中的文件全部删掉,删除时需要输入密码 4 、重启mac 电脑就搞定了。...

[12] 使用 CUDA 进行图像处理

使用 CUDA 进行图像处理 当下生活在高清摄像头的时代,这种摄像头能捕获高达1920*1920像素的高解析度画幅。想要实施的处理这么多的数据,往往需要几个TFlops地浮点处理性能,这些要求CPU也无法满足通过在代码中使用CUDA,可以利用GP…...

MyBatisPlus代码生成器(交互式)快速指南

引言 本片文章是对代码生成器(交互)快速配置使用流程,更多配置方法可查看官方文档: 代码生成器配置官网 如有疑问欢迎评论区交流! 文章目录 引言演示效果图引入相关依赖创建代码生成器对象引入Freemarker模板引擎依赖支持的模板引擎 MyBat…...

深度学习模型训练之日志记录

在深度学习模型训练过程中,进行有效的训练日志记录是至关重要的。以下是一些常见的策略和工具来实现这一目标: 1. 使用TensorBoard TensorBoard是TensorFlow提供的一个可视化工具,用于记录和展示训练过程中的各种指标。 设置TensorBoard&a…...

深入理解Python中的装饰器

装饰器是Python中一个强大且灵活的工具,允许开发者在不修改函数或类定义的情况下扩展或修改其行为。装饰器广泛应用于日志记录、访问控制、缓存等场景。本文将详细探讨Python中的装饰器,包括基本概念、函数装饰器和类装饰器、内置装饰器以及装饰器的高级用法。 目录 装饰器概…...

基于springboot的人力资源管理系统源码数据库

传统信息的管理大部分依赖于管理人员的手工登记与管理,然而,随着近些年信息技术的迅猛发展,让许多比较老套的信息管理模式进行了更新迭代,员工信息因为其管理内容繁杂,管理数量繁多导致手工进行处理不能满足广大用户的…...

如何舒适的使用VScode

安装好VScode后通常会很不好用,以下配置可以让你的VScode变得好用许多。 VScode的配置流程 1、设置VScode中文2、下载C/C拓展,使代码可以跳转3、更改编码格式4、设置滚轮缩放5、设置字体6、设置保存自动改变格式7、vscode设置快捷代码 1、设置VScode中文…...

【微信小程序】开发环境配置

目录 小程序的标准开发模式: 注册小程序的开发账号 安装开发者工具 下载 设置外观和代理 第一个小程序 -- 创建小程序项目 查看项目效果 第一种:在模拟器上查看项目效果 项目的基本组成结构 小程序代码的构成 app.json文件 project.config…...

启动盘镜像制作神器(下载即用)

一、简介 1、一款受欢迎且功能强大的USB启动盘制作工具,允许用户将操作系统镜像文件(如Windows或Linux的ISO文件)制作成可引导的USB启动盘。它支持多种操作系统,包括Windows、Linux和各种基于UEFI的系统。Rufus的一个显著特点是制作速度快,据称其速度比其他常用工具如UNet…...

PHP框架详解 - Symfony框架

引言 在现代Web开发中,PHP作为一种灵活且功能强大的编程语言,广泛应用于各种Web应用程序的开发中。为了提高开发效率、代码的可维护性和可扩展性,开发者通常会选择使用框架来构建应用程序。在众多PHP框架中,Symfony以其强大的功能…...

鸿蒙开发:【线程模型】

线程模型 线程类型 Stage模型下的线程主要有如下三类: 主线程 执行UI绘制。管理主线程的ArkTS引擎实例,使多个UIAbility组件能够运行在其之上。管理其他线程的ArkTS引擎实例,例如使用TaskPool(任务池)创建任务或取消…...

初级网络工程师之从入门到入狱(三)

本文是我在学习过程中记录学习的点点滴滴,目的是为了学完之后巩固一下顺便也和大家分享一下,日后忘记了也可以方便快速的复习。 中小型网络系统综合实战实验 前言一、详细拓扑图二、LSW2交换机三、LSW3交换机四、LSW1三层交换机4.1、4.2、4.3、4.4、4.5、…...

【数据结构】排序(直接插入、折半插入、希尔排序、快排、冒泡、选择、堆排序、归并排序、基数排序)

目录 排序一、插入排序1.直接插入排序2.折半插入排序3.希尔排序 二、交换排序1.快速排序2.冒泡排序 三、选择排序1. 简单选择排序2. 堆排序3. 树排序 四、归并排序(2-路归并排序)五、基数排序1. 桶排序(适合元素关键字值集合并不大)2. 基数排序基数排序的…...

MongoDB ObjectId 详解

MongoDB ObjectId 详解 MongoDB 是一个流行的 NoSQL 数据库,它使用 ObjectId 作为文档的唯一标识符。ObjectId 是一个 12 字节的 BSON 类型,它在 MongoDB 中用于保证每个文档的唯一性。本文将详细解释 ObjectId 的结构、生成方式以及它在 MongoDB 中的应用。 ObjectId 的结…...

大数据-11-案例演习-淘宝双11数据分析与预测 (期末问题)

目录 第一部分 Hadoop是什么 官方解释: 个人总结 HDFS 是什么? 官方解释: 个人总结 yarn是什么? 官方解释: 个人总结 mapreduce,spark 是什么? 官方解释: MapReduce Spark 个人总结 MapReduce Spa…...

Kubernetes集群监控,kube-prometheus安装教程,一键部署

Kube-prometheus介绍 Kube-prometheus 是一个用于监控 Kubernetes 集群的完整解决方案。它基于 Prometheus 生态系统,提供了一整套预配置的组件和配置文件,以便轻松地在 Kubernetes 上部署和运行 Prometheus 监控系统。 Kube-prometheus 主要包括以下组…...

【Gradio】快速入门

https://www.gradio.app/ Gradio 是一个开源 Python 软件包https://github.com/gradio-app/gradio ,可以让你快速为机器学习模型、API 或任何任意 Python 函数创建一个演示或网络应用程序。然后,您就可以使用 Gradio 内置的分享功能,在几秒钟…...

深度学习Day-19:DenseNet算法实战与解析

🍨 本文为:[🔗365天深度学习训练营] 中的学习记录博客 🍖 原作者:[K同学啊 | 接辅导、项目定制] 要求: 根据 Pytorch 代码,编写出 TensorFlow 代码研究 DenseNet 与 ResNetV 的区别改进思路是…...

基于openssl实现AES ECB加解密

AES加密,全称高级加密标准(Advanced Encryption Standard),是一种广泛使用的对称加密算法,用于保护电子数据的安全。以下是AES加密的基本原理和特点: 基本概念 对称加密:AES是一种对称加密算法…...

Git:从配置到合并冲突

目录 1.前言 2.Git的下载与初始化配置 3.Git中新建仓库 4.Git的工作区域和文件状态 5.Git中查看操作和提交记录 6.Git中添加和提交文件 7.Git中回退提交版本 8.Git中查看版本间的差异 9.Git中删除文件 10.Git中忽略指定文件 11.Git中配置SSH密钥 12.Git中关联克隆仓库 13.Git中…...

leetcode hot100 之 最长公共子序列

题目 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。 一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(…...

短剧APP开发,新的“财富”

在数字化时代,开发短剧APP不仅是顺应潮流的必然选择,更是抓住市场机遇的关键所在。为确保短剧APP能有效地吸引并留住用户,以下是一些主要功能及其介绍: 1、短剧搜索 关键词搜索:用户可以通过输入关键词(如…...

Uniapp与第三方应用数据通讯

首先说明一点,这个只是uniapp代码编写的应用之间相互传递数据,uniapp编写的与其他语言编写的我尚不知道能不能传递。 应用1: plus.runtime.launchApplication({pname: "应用的appid",// extra 中可以自定数据,url和da…...

AI大模型战场:通用大模型与垂直大模型的角逐

随着人工智能技术的迅猛发展,AI大模型已成为推动科技进步的重要力量。然而,在AI大模型的战场上,通用大模型与垂直大模型之间的分化日益明显。两者各有其独特的优势和潜力,在不同的应用场景中发挥着重要作用。那么,在这…...

linux的一些知识点分享-------关于操作维护的一些知识点

Apache服务器的监听端口,默认为() Apache服务器的监听端口,默认为80。 vsftpd中,可以不需提供账号密码就能进行访问的用户是( ) 在vsftpd(Very Secure FTP Daemon)中,可以不需要提供账号密码就能进行访问的用户通常是匿名用户。…...

莱州网站建设哪家好/有域名了怎么建立网站

MEAN(MongoDB Express AngularJS NodeJS )堆栈 web 开发框架,从前端到后端甚至是数据库(MongoDB -JSON)都使用 JavaScript。在 Node.js 之前,Web 开发通常是在 PHP 的帮助下完成的,因为它很容易与 HTML 集成,帮助开发人员立即构…...

离婚在线律师/郑州seo哪家专业

分享一个大牛的人工智能教程。零基础!通俗易懂!风趣幽默!希望你也加入到人工智能的队伍中来!请轻击http://www.captainbed.net (1)Cookie数据存放在客户的浏览器上,Session数据放在服务器上。 …...

阿里云服务器做美女网站/网络搭建教程

给定任意一个正整数,求比这个数大且最小的“不重复数”,“不重复数”的含义是相邻两位不相同,例如:1101是重复数,1231是不重复数 思路: 1、前把这个正整数加1,保证求得的数比这个数大 2、从左到…...

北京做微信网站哪家好/网站网页设计

Android File Transfer for Mac是一款强大的安卓文件传输工具,由Google公司开发。它可以帮助Mac用户快速、方便地将文件从安卓设备传输到电脑上,并支持多种文件类型和格式。Android File Transfer for Mac提供了一个简单易用的界面,用户只需要…...

做3个网站需要多大的服务器/如何快速优化网站排名

C语言的数据结构与算法,难就难在链表,学会了链表,可能后面就一点都不难了。书籍推荐《数据结构与算法分析—C语言描述版》,要深入学习的话可以选择这本书,因为针对链表的讲解是比较详细的,所以可以很快理解…...

带状疱疹的预防措施/深圳seo优化排名

输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。 基本思路:建立一个包含K个元素的大顶堆。 注:python中貌似只能直接建小顶堆。 # -*- coding:utf-8 -*- class Solution:def …...