【TensorFlow深度学习】WGAN与DCGAN在图像生成中的应用实例
WGAN与DCGAN在图像生成中的应用实例
- WGAN与DCGAN在图像生成中的应用实例:一场深度学习的视觉盛宴
- DCGAN简介
- WGAN简介
- 应用实例:基于DCGAN的图像生成
- 应用实例:WGAN的图像生成实践
- 结语
WGAN与DCGAN在图像生成中的应用实例:一场深度学习的视觉盛宴
在深度学习的广阔领域内,生成对抗网络(GANs)以一种革新性的姿态,重塑了我们对数据生成任务的理解。其中,Deep Convolutional GANs (DCGANs) 和 Wasserstein GANs (WGANs) 是两种里程碑式的模型,它们不仅极大地提升了图像生成的质量,还为后续的研究铺平了道路。本文旨在深入探讨这两种模型的架构精髓,通过实战代码实例,揭示它们在图像生成任务中的独特魅力与实际应用。
DCGAN简介
DCGANs首次在2016年由Radford等人提出,它通过引入卷积层至GAN架构,显著提高了生成图像的质量和多样性。DCGAN通过强制使用全卷积网络和某些特定的架构约束,确保了模型的稳定训练和高质量的图像生成。
WGAN简介
WGAN的提出是对传统GANs训练不稳定性的一种回应,其核心在于使用Wasserstein距离(也称地球移动距离)替代Jensen-Shannon散度作为损失函数,从而提供了更为稳定的训练过程和更好的图像质量。WGAN的关键创新在于使用了 lipschitz 约束来限制判别器的表达能力,保证了梯度的连续性。
应用实例:基于DCGAN的图像生成
让我们首先通过一个基于DCGAN的简单项目,探索如何生成具有特定特征的图像。这里,我们以生成动漫人物头像为例。
import torch
import torch.nn as nn
from torchvision import datasets, transforms
from torch.autograd.variable import Variable# 超参数设置
nz = 100 # 噪声维度
ngf = 64 # 生成器特征图数量
ndf = 64 # 判别器特征图数量
nc = 3 # 图像通道数,对于RGB图像为3
img_size = 64
num_epochs = 50
lr = 0.0002
beta1 = 0.5# 数据预处理和加载
transform = transforms.Compose([transforms.Resize(img_size),transforms.CenterCrop(img_size),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])dataset = datasets.ImageFolder(root='path/to/your/dataset', transform=transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=True, num_workers=2)# 构建模型
class DCGANGenerator(nn.Module):# ... 略去具体定义 ...class DCGANDiscriminator(nn.Module):# ... 略去具体定义 ...# 实例化模型
netG = DCGANGenerator()
netD = DCGANDiscriminator()# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizerD = torch.optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = torch.optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))# 训练循环
for epoch in range(num_epochs):for i, data in enumerate(dataloader, 0):# 更新判别器netD.zero_grad()# ... 略去训练细节 ...# 更新生成器netG.zero_grad()# ... 略去训练细节 ...# 生成图像示例
fixed_noise = torch.randn(64, nz, 1, 1)
fake_images = netG(fixed_noise)
torchvision.utils.save_image(fake_images, 'dcgan_generated_images.png', normalize=True)
应用实例:WGAN的图像生成实践
接下来,我们将转向WGAN,看看如何通过其独特的损失函数设计,实现更为平滑且有效的图像生成过程。
import torch.optim as optim# 重新定义判别器,去除sigmoid激活
class WGANDiscriminator(nn.Module):# ... 修改后的判别器定义 ...# 定义WGAN损失函数和优化器
optimizerD = optim.RMSprop(netD.parameters(), lr=lr)
optimizerG = optim.RMSprop(netG.parameters(), lr=lr)# 训练循环调整
for epoch in range(num_epochs):for i, data in enumerate(dataloader, 0):# 更新判别器netD.zero_grad()# 使用Wasserstein距离更新逻辑# ... 略去训练细节 ...# 更新生成器netG.zero_grad()# ... 略去训练细节 ...# 生成图像示例与之前相同
结语
通过上述实例,我们见证了DCGAN与WGAN在图像生成领域的卓越表现。DCGAN以其直观的全卷积结构,展示了深度学习在创造性任务上的潜力,而WGAN则通过理论上的创新,为GANs的稳定训练和性能提升树立了新标杆。无论是在艺术创作、数据增强还是模拟实验中,这些模型都展现了其无可比拟的价值。未来,随着算法的不断演进和硬件能力的提升,我们可以期待更多突破性进展,让生成对抗网络成为推动人工智能领域发展的重要力量。
相关文章:
【TensorFlow深度学习】WGAN与DCGAN在图像生成中的应用实例
WGAN与DCGAN在图像生成中的应用实例 WGAN与DCGAN在图像生成中的应用实例:一场深度学习的视觉盛宴DCGAN简介WGAN简介应用实例:基于DCGAN的图像生成应用实例:WGAN的图像生成实践结语 WGAN与DCGAN在图像生成中的应用实例:一场深度学习…...
垫付商贩任务补单平台补单系统网站源码提供
垫付商贩任务补单平台补单系统网站源码提供...
vue富文本wangeditor加@人功能(vue2 vue3都可以)
依赖 "wangeditor/editor": "^5.1.23", "wangeditor/editor-for-vue": "^5.1.12", "wangeditor/plugin-mention": "^1.0.0",RichEditor.vue <template><div style"border: 1px solid #ccc; posit…...
######## redis各章节终篇索引(更新中) ############
其他 父子关系(ctx、协程)#### golang存在的父子关系 ####_子goroutine panic会导致父goroutine挂掉吗-CSDN博客 参数传递(slice、map)#### go中参数传递(涉及:切片slice、map、channel等) ###…...
一个基于MySQL的数据库课程设计的基本框架
数据库课程设计(MySQL)通常涉及多个步骤,以确保数据库的有效设计、实现和维护。以下是一个基于MySQL的数据库课程设计的基本框架,结合参考文章中的相关信息进行整理: ### 一、引言 * **背景**:简要介绍为…...
架构设计基本原则
开闭原则 开闭原则(Open Closed Principle,OCP)是面向对象编程(OOP)中的一个核心原则,主要强调的是软件实体(类、模块、函数等)应该对扩展开放,对修改封闭。 解释&…...
云原生应用开发培训,开启云计算时代的新征程
在云计算时代,云原生应用开发技术已经成为IT领域的热门话题。如果您想要转型至云原生领域,我们的云原生应用开发培训将帮助您开启新征程。 我们的课程内容涵盖了云原生技术的基础概念、容器技术、微服务架构、持续集成与持续发布(CI/CD&#…...
【数据库设计】宠物商店管理系统
目录 🌊1 问题的提出 🌊2 需求分析 🌍2.1 系统目的 🌍2.2 用户需求 🌻2.2.1 我国宠物行业作为新兴市场,潜力巨大 🌻2.2.2 我国宠物产品消费规模逐年增大 🌻2.2.3 我国宠物主选…...
前端 JS 经典:node 的模块查找策略
前言:我们引入模块后,node 大概的查找步骤分为 文件查找、文件夹查找、内置模块查找、第三方模块查找,在 node 中使用 ESM 模块语法,需要创建 package.json 文件,并将 type 设置为 module。简单起见,我们用…...
C++中的23种设计模式
目录 摘要 创建型模式 1. 工厂方法模式(Factory Method Pattern) 2. 抽象工厂模式(Abstract Factory Pattern) 3. 单例模式(Singleton Pattern) 4. 生成器模式(Builder Pattern࿰…...
vue.js+node.js+mysql在线聊天室源码
vue.jsnode.jsmysql在线聊天室源码 技术栈:vue.jsElement UInode.jssocket.iomysql vue.jsnode.jsmysql在线聊天室源码...
浏览器无痕模式和非无痕模式的区别
无痕模式 1. 历史记录:在无痕模式下,浏览器不会保存浏览记录、下载记录、表单数据和Cookies。当你关闭无痕窗口后,这些信息都会被删除。 2. Cookies:无痕模式会在会话期间临时存储Cookies,但在关闭无痕窗口…...
WPF框架,修改ComboBox控件背景色 ,为何如此困难?
直接修改Background属性不可行 修改控件背景颜色,很多人第一反应便是修改Background属性,但是修改过后便会发现,控件的颜色没有发生任何变化。 于是在网上搜索答案,便会发现一个异常尴尬的情况,要么就行代码简单但是并…...
Diffusers代码学习: 文本引导深度图像生成
StableDiffusionDepth2ImgPipeline允许传递文本提示和初始图像,以调节新图像的生成。此外,还可以传递depth_map以保留图像结构。如果没有提供depth_map,则管道通过集成的深度估计模型自动预测深度。 # 以下代码为程序运行进行设置 import o…...
网络的下一次迭代:AVS 将为 Web2 带去 Web3 的信任机制
撰文:Sumanth Neppalli,Polygon Ventures 编译:Yangz,Techub News 本文来源香港Web3媒体:Techub News AVS (主动验证服务)将 Web2 的规模与 Web3 的信任机制相融合,开启了网络的下…...
OpenCV 的模板匹配
OpenCV中的模板匹配 模板匹配(Template Matching)是计算机视觉中的一种技术,用于在大图像中找到与小图像(模板)相匹配的部分。OpenCV提供了多种模板匹配的方法,主要包括基于相关性和基于平方差的匹配方法。…...
26.0 Http协议
1. http协议简介 HTTP(Hypertext Transfer Protocol, 超文本传输协议): 是万维网(WWW: World Wide Web)中用于在服务器与客户端(通常是本地浏览器)之间传输超文本的协议.作为一个应用层的协议, HTTP以其简洁, 高效的特点, 在分布式超媒体信息系统中扮演着核心角色. 自1990年提…...
IO流打印流
打印流 IO流打印流是Java中用来将数据打印到输出流的工具。打印流提供了方便的方法来格式化和输出数据,可以用于将数据输出到控制台、文件或网络连接。 分类:打印流一般是指:PrintStream,PrintWriter两个类 特点1:打印流只操作文件目的地,…...
Cohere reranker 一致的排序器
这本notebook展示了如何在检索器中使用 Cohere 的重排端点。这是在 ContextualCompressionRetriever 的想法基础上构建的。 %pip install --upgrade --quiet cohere %pip install --upgrade --quiet faiss# OR (depending on Python version)%pip install --upgrade --quiet…...
MySQL系列-语法说明以及基本操作(二)
1、MySQL数据表的约束 1.1、MySQL主键 “主键(PRIMARY KEY)”的完整称呼是“主键约束”。 MySQL 主键约束是一个列或者列的组合,其值能唯一地标识表中的每一行。这样的一列或多列称为表的主键,通过它可以强制表的实体完整性。 …...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
AD学习(3)
1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分: (1)PCB焊盘:表层的铜 ,top层的铜 (2)管脚序号:用来关联原理图中的管脚的序号,原理图的序号需要和PCB封装一一…...
车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...
深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学
一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件,其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时,价带电子受激发跃迁至导带,形成电子-空穴对,导致材料电导率显著提升。…...
Linux系统:进程间通信-匿名与命名管道
本节重点 匿名管道的概念与原理匿名管道的创建命名管道的概念与原理命名管道的创建两者的差异与联系命名管道实现EchoServer 一、管道 管道(Pipe)是一种进程间通信(IPC, Inter-Process Communication)机制,用于在不…...
MAZANOKE结合内网穿透技术实现跨地域图像优化服务的远程访问过程
文章目录 前言1. 关于MAZANOKE2. Docker部署3. 简单使用MAZANOKE4. 安装cpolar内网穿透5. 配置公网地址6. 配置固定公网地址总结 前言 在数字世界高速发展的今天,您是否察觉到那些静默增长的视觉数据正在悄然蚕食存储空间?随着影像记录成为日常习惯&…...
fast-reid部署
配置设置: 官方库链接: https://github.com/JDAI-CV/fast-reid# git clone https://github.com/JDAI-CV/fast-reid.git 安装依赖: pip install -r docs/requirements.txt 编译:切换到fastreid/evaluation/rank_cylib目录下&a…...
