当前位置: 首页 > news >正文

PyTorch -- 最常见损失函数 LOSS 的选择

  • 损失函数:度量模型的预测结果与真实值之间的差异;通过最小化 loss -> 最大化模型表现
  • 代码实现框架:设有 模型预测值 f (x), 真实值 y
    • 方法一: 步骤 1. criterion = torch.nn.某个Loss();步骤 2. loss = criterion(f(x), y)
    • 方法二:直接采用 F.某个_loss(f(x), y)

回归损失(Regression Loss)

  • torch.nn.L1Loss()】平均绝对值误差 MAE(Mean Abs Error): f (x) 和 y 之间差的绝对值的平均值
    • 具体数学计算公式: Loss = 1 n ∑ i = 0 n ∣ f ( x i ) − y ∣ \text{Loss}=\frac{1}{n}\sum^n_{i=0} |f(x_i)-y| Loss=n1i=0nf(xi)y
    • 注:L1 损失, 主要用于回归问题和简单的模型,所以很少使用
  • torch.nn.MSELoss()】平均平方误差 MSE(Mean Squared Error): f (x) 和 y 之间差的平方的平均值
    • 具体数学计算公式: Loss = 1 n ∑ i = 0 n ( f ( x i ) − y ) 2 \text{Loss}=\frac{1}{n}\sum^n_{i=0} (f(x_i)-y)^2 Loss=n1i=0n(f(xi)y)2F.mse_loss(f(x), y)
    • 注:L2 损失, 很常用

分类损失(Classification Loss)logistic regression

  • torch.nn.CrossEntropyLoss()】多分类交叉熵损失函数 Cross Entropy Loss:
    • 具体数学计算公式: Loss = ∑ y i log ⁡ ( f ( x i ) ) \text{Loss}=\sum y_i \log(f(x_i)) Loss=yilog(f(xi)), 注意其中 f ( x i ) f(x_i) f(xi) ​ 表示模型预测出的概率值如 [0.1, 0.7, 0.2]
    • 通常和 softmax (soft version of max S ( y i ) = e y i ∑ e y i S(y_i) = \frac{e^{y_i}}{\sum e^{y_i}} S(yi)=eyieyi: F.softmax(y)) 搭配使用 (softmax 负责产生上述概率输出)

  • B站视频参考资料
  • 详细博客参考资料

相关文章:

PyTorch -- 最常见损失函数 LOSS 的选择

损失函数:度量模型的预测结果与真实值之间的差异;通过最小化 loss -> 最大化模型表现代码实现框架:设有 模型预测值 f (x), 真实值 y 方法一: 步骤 1. criterion torch.nn.某个Loss();步骤 2. loss criterion(f(x…...

Prometheus 监控系统

一、Prometheus概述 是一个开源的服务监控系统和时序数据库,其提供了通用的数据模型和快捷数据采集、存储和査询接口。它的核心组件. 1.1 Prometheus server 会定期从静态配置的监控目标或者基于服务发现自动配置的目标中进行拉取数据,新拉取到的数据会…...

Spring Boot中使用logback出现LOG_PATH_IS_UNDEFINED文件夹

1.首先查看&#xff0c;application.properties 文件是否按格式编写 logging.pathmylogs logging.configclasspath:logback-spring.xml2.查看 logback-spring.xml <springProperty scope"context" name"LOG_HOME" source"logging.path"/> …...

代码随想录——组合总数Ⅲ(Leetcode216)

题目链接 回溯 class Solution {List<List<Integer>> res new ArrayList<List<Integer>>();List<Integer> list new ArrayList<Integer>();public List<List<Integer>> combinationSum3(int k, int n) {backtracking(k, …...

Android native层的线程分析(C++),以及堆栈打印调试

文章目录 Android native层的线程分析(C)&#xff0c;多线程实现1.native线程的创建第一部分&#xff1a;android_thread模块第二部分&#xff1a;linux_thread模块 2.测试linux_thread模块3.Android native的Thread类3.1源码分析 4.native层堆栈调试方法 Android native层的线…...

计算机科学:2024年高考生的明智之选?兴趣与趋势并重的决策指南

站在2024年这个时间节点上&#xff0c;计算机相关专业依然保持着其“万金油”地位&#xff0c;尽管面临一定的挑战&#xff0c;但其长期发展前景和就业潜力仍然乐观。以下是从不同身份角度出发的观点分析&#xff1a; 高考生视角&#xff1a; 如果你是今年的高考生&#xff0…...

跨界合作机会:通过淘宝数据挖掘潜在的合作伙伴与市场拓展方向

淘宝平台汇聚了众多商家和消费者&#xff0c;生成了大量的交易数据&#xff0c;这些数据为商家提供了挖掘跨界合作机会和市场拓展方向的丰富线索。以下是如何利用淘宝数据来寻找潜在的合作伙伴和探索新的市场机会的一些策略&#xff1a; 消费者行为分析&#xff1a;通过跟踪消费…...

如何利用智能家居打造一个“会呼吸的家”?一体化电动窗帘

如何利用智能家居打造一个“会呼吸的家”&#xff1f;一体化电动窗帘 史新华 隐藏式一体化智能电动窗帘与市面上其他窗帘不同的是&#xff0c;电机内置于轨道之中&#xff0c;一体化&#xff0c;美观、安静、滑动顺畅。 每次都会自动打开和关闭&#xff0c;相当漂亮。 众多家庭…...

PyTorch -- 最常见激活函数的选择

首先&#xff0c;简单复习下什么是梯度&#xff1a;梯度是偏微分的集合 举例说明&#xff1a;对于 z y 2 − x 2 : ∇ z ( ∂ z ∂ x , ∂ z ∂ y ) &#xff08; 2 x , 2 y &#xff09; z y^2-x^2: \nabla z (\frac{\partial z}{\partial x}, \frac{\partial z}{\partia…...

人工智能--制造业和农业

欢迎来到 Papicatch的博客 文章目录 &#x1f349;人工智能在制造业中的应用 &#x1f348; 应用场景及便利 &#x1f34d;生产线自动化 &#x1f34d;质量控制 &#x1f34d;预测性维护 &#x1f34d;供应链优化 &#x1f348; 技术实现及核心 &#x1f34d;机器学习和…...

go语言,拼接字符串有哪些方式

目录 第一种方式&#xff1a; 使用加号"" 第二种方式&#xff1a; 使用fmt.Sprintf 第三种方式&#xff1a; 使用strings.Join 第四种方式&#xff1a; 使用strings.Builder 第五种方式&#xff1a; 使用bytes.Buffer go语言&#xff0c;拼接字符串的方式有…...

C++类型转换深度解析:从基础数据类型到字符串,再到基础数据类型的完美转换指南

前言 在 C 编程中&#xff0c;我们经常需要在基础数据类型&#xff08;如 int、double、float、long、unsigned int 等&#xff09;与 string 类型之间进行转换。这种转换对于处理用户输入、格式化输出、数据存储等场景至关重要。 本文将详细介绍如何在 C 中实现这些转换。 文…...

一文了解:渐进式web应用(PWA),原生应用还香吗?

前端开发是一个充满活力和不断演进的领域&#xff0c;各类技术层出不穷&#xff0c;PWA模式的出现就是想让web移动应用获得原生一样的体验&#xff0c;同时有大幅度降低开发成本&#xff0c;那么它到底能行吗&#xff1f;贝格前端工场带领大家了解一下。 一、什么是渐进式web应…...

SOLIDWORKS学生支持 可访问各种产品资源

你是不是一个热爱设计、追求创新的学生&#xff1f;你是不是在寻找一款能够帮助你实现设计梦想的工具&#xff1f;那么&#xff0c;SolidWorks学生支持是你的首要选择&#xff01; SOLIDWORKS作为三维CAD设计软件&#xff0c;一直致力于为广大学生提供全方面的支持。无论你是初…...

VCS基本仿真

这里记录三种仿真方式&#xff1a; 第一种是将verilog文件一个一个敲在终端上进行仿真&#xff1b; 第二种是将多个verilog文件的文件路径整理在一个文件中&#xff0c;然后进行仿真&#xff1b; 第三种是利用makefile文件进行仿真&#xff1b; 以8位加法器为例&#xff1a; …...

Hbase中Rowkey的设计方法

Hbase中Rowkey的设计方法 过去对于Rowkey设计方法缺乏理解&#xff0c;最近结合多篇博主的文章&#xff0c;进行了学习。有不少心得体会。总结下来供后续学习和回顾。 一、设计Rowkey的三个原则 1.长度原则&#xff1a;长度不能太长&#xff0c;小于100个字节。可以偏端一些…...

Python基础总结之functools.wraps介绍与应用

Python基础总结之functools.wraps介绍与应用 在Python编程中&#xff0c;装饰器&#xff08;decorator&#xff09;是一种非常强大的工具&#xff0c;它允许开发者在不改变函数本身的情况下&#xff0c;动态地增加函数的功能。使用装饰器时&#xff0c;常常会用到 functools.wr…...

UE5基础1-下载安装

目录 一.下载 二.安装 三.安装引擎 四.其他 简介: UE5&#xff08;Unreal Engine 5&#xff09;是一款功能极其强大的游戏引擎。 它具有以下显著特点&#xff1a; 先进的图形技术&#xff1a;能够呈现出令人惊叹的逼真视觉效果&#xff0c;包括高逼真的光影、材…...

前端实现获取后端返回的文件流并下载

前端实现获取后端返回的文件流并下载 方法一&#xff1a;使用Axios实现文件流下载优点缺点 方法二&#xff1a;使用封装的Request工具实现文件流下载优点缺点 方法三&#xff1a;直接通过URL跳转下载优点缺点 结论 在前端开发中&#xff0c;有时需要从后端获取文件流&#xff0…...

Windows下对于Qt中带 / 的路径的处理

在Windows下&#xff0c;如果你想使用操作系统的分隔符显示用户的路径&#xff0c;请使用 toNativeSeparators()。 请看以下代码&#xff1a; void Player::on_playBtn_clicked() {if (this->m_url.isEmpty()) {openMedia();if (this->m_url.isEmpty())return;}qDebug(…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...