PyTorch -- 最常见损失函数 LOSS 的选择
- 损失函数:度量模型的预测结果与真实值之间的差异;通过
最小化 loss-> 最大化模型表现 - 代码实现框架:设有 模型预测值
f (x), 真实值y- 方法一: 步骤 1.
criterion = torch.nn.某个Loss();步骤 2.loss = criterion(f(x), y) - 方法二:直接采用
F.某个_loss(f(x), y)
- 方法一: 步骤 1.
回归损失(Regression Loss)
- 【
torch.nn.L1Loss()】平均绝对值误差MAE(Mean Abs Error): f (x) 和 y 之间差的绝对值的平均值- 具体数学计算公式: Loss = 1 n ∑ i = 0 n ∣ f ( x i ) − y ∣ \text{Loss}=\frac{1}{n}\sum^n_{i=0} |f(x_i)-y| Loss=n1∑i=0n∣f(xi)−y∣
- 注:L1 损失, 主要用于回归问题和简单的模型,所以很少使用
- 【
torch.nn.MSELoss()】平均平方误差MSE(Mean Squared Error): f (x) 和 y 之间差的平方的平均值- 具体数学计算公式: Loss = 1 n ∑ i = 0 n ( f ( x i ) − y ) 2 \text{Loss}=\frac{1}{n}\sum^n_{i=0} (f(x_i)-y)^2 Loss=n1∑i=0n(f(xi)−y)2:
F.mse_loss(f(x), y) - 注:L2 损失, 很常用
- 具体数学计算公式: Loss = 1 n ∑ i = 0 n ( f ( x i ) − y ) 2 \text{Loss}=\frac{1}{n}\sum^n_{i=0} (f(x_i)-y)^2 Loss=n1∑i=0n(f(xi)−y)2:
分类损失(Classification Loss)logistic regression
- 【
torch.nn.CrossEntropyLoss()】多分类交叉熵损失函数 Cross Entropy Loss:- 具体数学计算公式: Loss = ∑ y i log ( f ( x i ) ) \text{Loss}=\sum y_i \log(f(x_i)) Loss=∑yilog(f(xi)), 注意其中 f ( x i ) f(x_i) f(xi) 表示模型预测出的概率值如 [0.1, 0.7, 0.2]
- 通常和
softmax(soft version of max S ( y i ) = e y i ∑ e y i S(y_i) = \frac{e^{y_i}}{\sum e^{y_i}} S(yi)=∑eyieyi:F.softmax(y)) 搭配使用 (softmax 负责产生上述概率输出)
- B站视频参考资料
- 详细博客参考资料
相关文章:
PyTorch -- 最常见损失函数 LOSS 的选择
损失函数:度量模型的预测结果与真实值之间的差异;通过最小化 loss -> 最大化模型表现代码实现框架:设有 模型预测值 f (x), 真实值 y 方法一: 步骤 1. criterion torch.nn.某个Loss();步骤 2. loss criterion(f(x…...
Prometheus 监控系统
一、Prometheus概述 是一个开源的服务监控系统和时序数据库,其提供了通用的数据模型和快捷数据采集、存储和査询接口。它的核心组件. 1.1 Prometheus server 会定期从静态配置的监控目标或者基于服务发现自动配置的目标中进行拉取数据,新拉取到的数据会…...
Spring Boot中使用logback出现LOG_PATH_IS_UNDEFINED文件夹
1.首先查看,application.properties 文件是否按格式编写 logging.pathmylogs logging.configclasspath:logback-spring.xml2.查看 logback-spring.xml <springProperty scope"context" name"LOG_HOME" source"logging.path"/> …...
代码随想录——组合总数Ⅲ(Leetcode216)
题目链接 回溯 class Solution {List<List<Integer>> res new ArrayList<List<Integer>>();List<Integer> list new ArrayList<Integer>();public List<List<Integer>> combinationSum3(int k, int n) {backtracking(k, …...
Android native层的线程分析(C++),以及堆栈打印调试
文章目录 Android native层的线程分析(C),多线程实现1.native线程的创建第一部分:android_thread模块第二部分:linux_thread模块 2.测试linux_thread模块3.Android native的Thread类3.1源码分析 4.native层堆栈调试方法 Android native层的线…...
计算机科学:2024年高考生的明智之选?兴趣与趋势并重的决策指南
站在2024年这个时间节点上,计算机相关专业依然保持着其“万金油”地位,尽管面临一定的挑战,但其长期发展前景和就业潜力仍然乐观。以下是从不同身份角度出发的观点分析: 高考生视角: 如果你是今年的高考生࿰…...
跨界合作机会:通过淘宝数据挖掘潜在的合作伙伴与市场拓展方向
淘宝平台汇聚了众多商家和消费者,生成了大量的交易数据,这些数据为商家提供了挖掘跨界合作机会和市场拓展方向的丰富线索。以下是如何利用淘宝数据来寻找潜在的合作伙伴和探索新的市场机会的一些策略: 消费者行为分析:通过跟踪消费…...
如何利用智能家居打造一个“会呼吸的家”?一体化电动窗帘
如何利用智能家居打造一个“会呼吸的家”?一体化电动窗帘 史新华 隐藏式一体化智能电动窗帘与市面上其他窗帘不同的是,电机内置于轨道之中,一体化,美观、安静、滑动顺畅。 每次都会自动打开和关闭,相当漂亮。 众多家庭…...
PyTorch -- 最常见激活函数的选择
首先,简单复习下什么是梯度:梯度是偏微分的集合 举例说明:对于 z y 2 − x 2 : ∇ z ( ∂ z ∂ x , ∂ z ∂ y ) ( 2 x , 2 y ) z y^2-x^2: \nabla z (\frac{\partial z}{\partial x}, \frac{\partial z}{\partia…...
人工智能--制造业和农业
欢迎来到 Papicatch的博客 文章目录 🍉人工智能在制造业中的应用 🍈 应用场景及便利 🍍生产线自动化 🍍质量控制 🍍预测性维护 🍍供应链优化 🍈 技术实现及核心 🍍机器学习和…...
go语言,拼接字符串有哪些方式
目录 第一种方式: 使用加号"" 第二种方式: 使用fmt.Sprintf 第三种方式: 使用strings.Join 第四种方式: 使用strings.Builder 第五种方式: 使用bytes.Buffer go语言,拼接字符串的方式有…...
C++类型转换深度解析:从基础数据类型到字符串,再到基础数据类型的完美转换指南
前言 在 C 编程中,我们经常需要在基础数据类型(如 int、double、float、long、unsigned int 等)与 string 类型之间进行转换。这种转换对于处理用户输入、格式化输出、数据存储等场景至关重要。 本文将详细介绍如何在 C 中实现这些转换。 文…...
一文了解:渐进式web应用(PWA),原生应用还香吗?
前端开发是一个充满活力和不断演进的领域,各类技术层出不穷,PWA模式的出现就是想让web移动应用获得原生一样的体验,同时有大幅度降低开发成本,那么它到底能行吗?贝格前端工场带领大家了解一下。 一、什么是渐进式web应…...
SOLIDWORKS学生支持 可访问各种产品资源
你是不是一个热爱设计、追求创新的学生?你是不是在寻找一款能够帮助你实现设计梦想的工具?那么,SolidWorks学生支持是你的首要选择! SOLIDWORKS作为三维CAD设计软件,一直致力于为广大学生提供全方面的支持。无论你是初…...
VCS基本仿真
这里记录三种仿真方式: 第一种是将verilog文件一个一个敲在终端上进行仿真; 第二种是将多个verilog文件的文件路径整理在一个文件中,然后进行仿真; 第三种是利用makefile文件进行仿真; 以8位加法器为例: …...
Hbase中Rowkey的设计方法
Hbase中Rowkey的设计方法 过去对于Rowkey设计方法缺乏理解,最近结合多篇博主的文章,进行了学习。有不少心得体会。总结下来供后续学习和回顾。 一、设计Rowkey的三个原则 1.长度原则:长度不能太长,小于100个字节。可以偏端一些…...
Python基础总结之functools.wraps介绍与应用
Python基础总结之functools.wraps介绍与应用 在Python编程中,装饰器(decorator)是一种非常强大的工具,它允许开发者在不改变函数本身的情况下,动态地增加函数的功能。使用装饰器时,常常会用到 functools.wr…...
UE5基础1-下载安装
目录 一.下载 二.安装 三.安装引擎 四.其他 简介: UE5(Unreal Engine 5)是一款功能极其强大的游戏引擎。 它具有以下显著特点: 先进的图形技术:能够呈现出令人惊叹的逼真视觉效果,包括高逼真的光影、材…...
前端实现获取后端返回的文件流并下载
前端实现获取后端返回的文件流并下载 方法一:使用Axios实现文件流下载优点缺点 方法二:使用封装的Request工具实现文件流下载优点缺点 方法三:直接通过URL跳转下载优点缺点 结论 在前端开发中,有时需要从后端获取文件流࿰…...
Windows下对于Qt中带 / 的路径的处理
在Windows下,如果你想使用操作系统的分隔符显示用户的路径,请使用 toNativeSeparators()。 请看以下代码: void Player::on_playBtn_clicked() {if (this->m_url.isEmpty()) {openMedia();if (this->m_url.isEmpty())return;}qDebug(…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
