当前位置: 首页 > news >正文

0107连通分量-无向图-数据结构和算法(Java)

文章目录

    • 1 API
    • 2 代码实现和分析
    • 测试
    • 后记

1 API

深度优先搜索下一个直接应用就是找出一幅图中的连通分量,定义如下API。

public class CC
CC(Graph g)预处理构造函数
booleanconnected(int v, int w)v和w连通吗
intcount()连通分量数
intid(int v)v所在的连通分量标识符(0~count()-1)

2 代码实现和分析

package com.gaogzhen.datastructure.graph.undirected;import com.gaogzhen.datastructure.stack.Stack;
import edu.princeton.cs.algs4.Graph;
import edu.princeton.cs.algs4.Queue;import java.util.*;/*** 无向图连通分量* @author: Administrator* @createTime: 2023/03/08 20:18*/
public class CC {/*** 顶点是否标记数组*/private boolean[] marked;/*** 顶点所在连通分量标志:0~count()-1*/private int[] id;/*** 每个连通分量顶点数量*/private int[] size;/*** 连通分量数量*/private int count;/*** 要处理的无向图*/private Graph graph;/*** 计算给定无向图的连通分量* @param graph 指定的无向图*/public CC(Graph graph) {this.graph = graph;int len = graph.V();// 初始化marked = new boolean[len];id = new int[len];size = new int[len];// 搜索连通分量bfs();}/*** 深度优先搜索连通分量*/private void dfs() {// 深度优先非递归实现,借助栈Stack<Iterator<Integer>> c = new Stack<>();// 搜索连通分量for (int v = 0; v < graph.V(); v++) {// 遍历图中所有顶点,以没有被标记过的顶点为起点,搜索连通分量// 执行完一次bsf,标记一个包含顶点v的连通分量if (!marked[v]) {dfs(c, v);// 连通分量标记+1count++;}}}/*** 深度优先搜索连通分量* @param v 起点*/private void dfs(Stack<Iterator<Integer>> c, int v) {if (!marked[v]) {// 起点未标记,标记计数加1// 起点默认没标记,可以不加是否标记判断marked[v] = true;id[v] = count;size[count]++;Iterable<Integer> iterable = graph.adj(v);Iterator<Integer> it;if (iterable != null && (it = iterable.iterator()) != null){// 顶点对应的邻接表迭代器存入栈c.push(it);}}while (!c.isEmpty()) {Iterator<Integer> it = c.pop();int x;while (it.hasNext()) {// 邻接表迭代器有元素,获取元素x = it.next();if (!marked[x]) {// 顶点未被标记,标记计数+1marked[x] = true;id[x] = count;size[count]++;if (it.hasNext()) {// 邻接表迭代器有元素重新入栈c.push(it);}// 深度优先原则,当前迭代器入栈,新标记顶点的邻接表迭代器入栈,下次循环优先访问Iterable<Integer> iterable = graph.adj(x);if (iterable != null && (it = iterable.iterator()) != null){c.push(it);}break;}}}}/*** 广度优先搜索连通分量*/private void bfs() {// 广度优先非递归实现,借助队列Queue<Integer> q = new Queue<>();// 搜索连通分量for (int v = 0; v < graph.V(); v++) {// 遍历图中所有顶点,以没有被标记过的顶点为起点,搜索连通分量// 执行完一次bsf,标记一个包含顶点v的连通分量if (!marked[v]) {bfs(q, v);// 连通分量标记+1count++;}}}private void bfs(Queue<Integer> q, int v) {marked[v] = true;id[v] = count;size[count]++;q.enqueue(v);while (!q.isEmpty()) {Integer x = q.dequeue();for (Integer w : graph.adj(x)) {if (!marked[w]) {marked[w] = true;id[w] = count;size[count]++;q.enqueue(w);}}}}/*** 给定顶点所在的连通分量标记* @param v 给定顶点* @return 顶点所在的连通分量标记* @throws IllegalArgumentException unless {@code 0<= v < V}*/public int id(int v) {validateVertex(v);return id[v];}/*** 顶点v和w是否连通(是否在同一个连通分量内)* @param v 顶点v* @param w 顶点w* @return  {@code true} 如果{@code v}和{@code w}在同一个连通分量内;否则{@code false}* @throws IllegalArgumentException unless {@code 0 <= v < V}* @throws IllegalArgumentException unless {@code 0 <= w < V}*/public boolean connected(int v, int w) {validateVertex(v);validateVertex(w);// 如果v和w在同一连通分量,那么连通分量标记相等;否则falsereturn id[v] == id[w];}/*** 返回无向图{@code graph}中连通分量数量* @return  返回无向图{@code graph}中连通分量数量*/public int count() {return count;}/*** 检查指定的顶点是否是有效顶点* @param v 给定顶点* @throws IllegalArgumentException unless {@code 0<= v < V}*/private void validateVertex(int v) {int V = marked.length;if (v < 0 || v >= V) {throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));}}public void display() {Map<Integer, ArrayList<Integer>> map = new HashMap<>(count);for (int i = 0; i < count; i++) {map.put(i, new ArrayList<>());}for (int i = 0; i < id.length; i++) {int k = id[i];ArrayList<Integer> list = map.get(k);list.add(i);map.put(k, list);}System.out.println("分量标记\t顶点数量\t顶点");for (int i = 0; i < count; i++) {ArrayList<Integer> l = map.get(i);System.out.println(i +"\t\t" + l.size() + "\t\t" + l);}}
}

这里广度优先搜索和深度优先搜索都能完成连通分量的搜索和标记,这里以广度优先搜索为例,简单讲解下算法。

说明:

  1. 算法第四版给出的是深度优先的递归版本实现,我们这里给出了非递归的广度优先搜索和深度优先搜索实现。
  2. 每次bfs(q, v)一定能保证完成包含顶点v的这个连通分量的搜索,这样外层for遍历所有顶点,在该连通分量的顶点(被标记)不在执行bfs;不在该连通分量的顶点(未被标记),一定是属于其他连通分量。直至遍历结束。
  3. bsf(q,v)通过先标记起点v,在标记和顶点v距离1条边的顶点,2条边的顶点,依次类推,直到标记所有连通的顶点。
  4. bfs(q, v)内顶点都属于同一连通分量,id[]记录这些顶点对应的连通分量标记就相同;每标记一个顶点,相应的记录该连通分量size[]顶点数量+1。

思考:

  1. 这里为什么即可以用广度优先又可以用深度优先呢?

命题C。深度优先搜索和广度优先搜索的预处理使用的时间和空间与V+E成正比且可以在常数时间内处理关于图的连通性查询。

证明。有代码可以知道每个邻接表的元素都只会被检查一次,共有2E个元素(每条边2个)。

测试

测试代码:

public static void testCC() {String path = "H:\\gaogzhen\\java\\projects\\algorithm\\asserts\\tinyG.txt";In in = new In(path);Graph graph = new Graph(in);CC cc = new CC(graph);int v = 0, w = 5;System.out.println("顶点 " + v + " 和顶点 " + w + "是否连通:" + cc.connected(v, w));System.out.println("顶点 " + w + "连通分量标记:" + cc.id(w));System.out.println("连通分量数量:" + cc.count());cc.display();
}

测试结果:

顶点 0 和顶点 5是否连通:true
顶点 5连通分量标记:0
连通分量数量:3
分量标记	顶点数量	顶点
0		7		[0, 1, 2, 3, 4, 5, 6]
1		2		[7, 8]
2		4		[9, 10, 11, 12]

后记

如果小伙伴什么问题或者指教,欢迎交流。

❓QQ:806797785

⭐️源代码仓库地址:https://gitee.com/gaogzhen/algorithm

参考链接:

[1][美]Robert Sedgewich,[美]Kevin Wayne著;谢路云译.算法:第4版[M].北京:人民邮电出版社,2012.10.p344-348.

相关文章:

0107连通分量-无向图-数据结构和算法(Java)

文章目录1 API2 代码实现和分析测试后记1 API 深度优先搜索下一个直接应用就是找出一幅图中的连通分量,定义如下API。 public class CCCC(Graph g)预处理构造函数booleanconnected(int v, int w)v和w连通吗intcount()连通分量数intid(int v)v所在的连通分量标识符(0~count()-…...

[学习笔记]黑马程序员python教程

文章目录思维导图Python基础知识图谱面向对象SQL入门和实战Python高阶技巧第一阶段第九章&#xff1a;Python异常、模块与包1.9.1异常的捕获1.9.1.1 为什么要捕获异常1.9.1.2 捕获常规的异常1.9.1.3 捕获指定的异常1.9.1.4 捕获多个异常1.9.1.5 捕获全部异常1.9.1.6 异常的else…...

如何配置用于构建 FastReport Online Designer 的 API ?

FastReport Online Designer 是一个跨平台的报表设计器&#xff0c;允许通过任何平台的移动设备创建和编辑报表。今天我们就一起来看看在2023版中新增和改进的功能有哪些&#xff0c;点击下方可以获取最新版免费试用哦&#xff01; FastReport Onlin Designe最新版试用https:/…...

【嵌入式Linux内核驱动】02_字符设备驱动

字符设备驱动 〇、基本知识 设备驱动分类 &#xff08;按共性分类方便管理&#xff09; 1.字符设备驱动 字符设备指那些必须按字节流传输&#xff0c;以串行顺序依次进行访问的设备。它们是我们日常最常见的驱动了&#xff0c;像鼠标、键盘、打印机、触摸屏&#xff0c;还有…...

【零散整理】

1-1 git查看代码的项目总行数 git log --prettytformat: --numstat | awk ‘{ add $1; subs $2; loc $1 - $2 } END { printf “added lines: %s, removed lines: %s, total lines: %s\n”, add, subs, loc }’ - 1-2 cookie const cookies document.cookie.split(; )for…...

RocketMQ重复消费的症状以及解决方案

RocketMQ重复消费的症状以及解决方案 生产消息时重复 症状 当一条消息已被成功发送到 消费者 并完成持久化&#xff0c;此时出现了网络闪断或者客户端宕机&#xff0c;导致服务端对客户端应答失败。 如果此时 生产者 意识到消息发送失败并尝试再次发送消息&#xff0c;消费者…...

数字化时代,企业的商业模式建设

随着新一代信息化、数字化技术的应用&#xff0c;众多领域通过科技革命和产业革命实现了深度化的数字改造&#xff0c;进入到以数据为核心驱动力的&#xff0c;全新的数据处理时代&#xff0c;并通过业务系统、商业智能BI等数字化技术和应用实现了数据价值&#xff0c;从数字经…...

项目实战典型案例23——-注册上nacos上的部分服务总是出现频繁掉线的情况

注册上nacos上的部分服务总是出现频繁掉线的情况一&#xff1a;背景介绍二&#xff1a;思路&方案解决问题过程涉及到的知识nacos服务注册和服务发现一&#xff1a;背景介绍 spring cloud项目通过nacos作为服务中心和配置中心&#xff0c;出现的问题是其中几个服务总是出现…...

玩转金山文档 3分钟让你的文档智能化

在上个月底&#xff0c;我们给大家推荐了金山轻维表的几个使用场景&#xff0c;社群中不少用户反响很好&#xff0c;对其中一些场景的解决方案十分感兴趣。但也有一些人表示&#xff0c;有些场景不知道如何实现&#xff0c;希望我们能提供模版/教程。这次我们将做一期热门模板盘…...

安装了nodejs怎么安装nvm

第一步&#xff0c;从控制面板卸载已经安装的node 第二步&#xff0c;删除C盘program开头文件夹下的node文件 第三步&#xff0c;去C/user/用户名 文件夹下&#xff0c;删除.npmrc文件 第四步&#xff0c;打开隐藏文件&#xff0c;第三步文件夹下有一个Appdata文件&#xff…...

java安全编码规范考试

java安全编码规范考试 整理不易&#xff0c;收点币&#xff01;&#xff01; 安全编码规范考试.md 下面对zip文件的安全解压缩描述&#xff0c;错误的是 A.zip文件解压时&#xff0c;可以使用entry.getSize(&#xff09;对解压缩文件进行文件大小判断 B.zip文件解压时&…...

表格检测识别技术的发展历程

近年来&#xff0c;随着计算机技术的飞速发展&#xff0c;越来越多的研究者开始关注表格检测识别技术。表格检测识别技术是一种利用计算机自动处理表格的技术&#xff0c;它可以实现从文本中检测出表格&#xff0c;并进行识别和提取。这种技术有助于提高文本处理的效率&#xf…...

设计UI - Adobe xd对象介绍

矩形工具 新建矩形 操作步骤&#xff1a;选择矩形工具&#xff0c;快捷键R&#xff0c;鼠标在画板上拖出矩形即可。 拖动定界框周围圆形手柄&#xff0c;可快速调整矩形大小&#xff0c;也可以输入宽和高的参数对矩形大小进行改变。 移动矩形 操作步骤&#xff1a;选择选择工具…...

优思学院|精益生产中的“单件流”真的能够做到吗?

精益生产中提到的“一个流”&#xff08;One Piece Flow&#xff09;是一种生产方式&#xff0c;它的核心理念是通过合理配置作业场地、人员和设备&#xff0c;使产品从投入到成品产出的整个制造加工过程中始终处于不停滞、不堆积、不超越&#xff0c;按节拍一个一个地流动。 …...

移除元素问题解决方法------LeetCode-OJ题

问题&#xff1a; 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 要求&#xff1a; 不要使用额外的数组空间&#xff0c;你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改…...

JavaScript学习笔记(1.0)

push() 语法&#xff1a;数组.push(数据) 作用&#xff1a;将数据追加到数组的末尾 返回值&#xff1a;追加数据后数组最新的长度 pop() 语法&#xff1a;数组.pop() 作用&#xff1a;删除数组最后一个数据 返回值&#xff1a;被删除的数据 unshift() 语法&#xff1a;数…...

FCN网络介绍

目录前言一.FCN网络二.网络创新点前言 在图像分割领域&#xff0c;有很多经典的网络&#xff0c;如MASK R-CNN&#xff0c;U-Net&#xff0c;SegNet&#xff0c;DeepLab等网络都是以FCN为基础进行设计的。我们这里简单介绍一下这个网络。 一.FCN网络 FCN网络介绍   FCN 即全…...

Idea+maven+spring-cloud项目搭建系列--11 整合dubbo

前言&#xff1a; 微服务之间通信框架dubbo&#xff0c;使用netty &#xff08;NIO 模型&#xff09;完成RPC 接口调用&#xff1b; 1 dubbo 介绍&#xff1a; Apache Dubbo 是一款 RPC 服务开发框架&#xff0c;用于解决微服务架构下的服务治理与通信问题&#xff0c;官方提…...

2023年上半年北京杭州/广州深圳软考中/高级报名入口

软考是全国计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试&#xff08;简称软考&#xff09;项目&#xff0c;是由国家人力资源和社会保障部、工业和信息化部共同组织的国家级考试&#xff0c;既属于国家职业资格考试&#xff0c;又是职称资格考试。 系统集成…...

jupyter notebook配置和使用

简介 Jupyter Notebook是基于网页的用于交互计算的应用程序。其可被应用于全过程计算&#xff1a;开发、文档编写、运行代码和展示结果。 参考博客&#xff1a;https://zhuanlan.zhihu.com/p/33105153 特点 ①编程时具有语法高亮、缩进、tab补全的功能。 ② 可直接通过浏览器…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...