当前位置: 首页 > news >正文

PyTorch 张量数据类型

  • 【数据类型】Python 与 PyTorch 常见数据类型对应:
    在这里插入图片描述
    a.type() 获取数据类型,用 isinstance(a, 目标类型) 进行类型合法化检测

    >>> import torch
    >>> a = torch.randn(2,3)
    >>> a
    tensor([[-1.7818, -0.2472, -2.0684],[ 0.0117,  1.4698, -0.9359]])
    >>> a.type()  ## 获取数据类型
    'torch.FloatTensor'
    >>> isinstance(a, torch.FloatTensor)  ## 类型合法化检测
    True
    >>> 
    
  • 【什么是张量】标量与张量:用 a.dim(), a.shape 或者 a.size() 查看 dim 为 0 是标量,否则是张量

    >>> import torch
    >>>
    >>> a = torch.tensor(1) 
    >>> a
    tensor(1)
    >>> a.dim()
    >>> 0  ## 标量>>> a = torch.Tensor([1]) 
    >>> a
    tensor([1.])
    >>> a.dim()
    >>> 1  ## 张量
    
  • 【生成张量】常见方法如下:

    • 常见随机方法:torch.randn(shape), torch.rand(shape), torch.randint(min, max, shape), torch.rand_like(a), torch.normal(mean, std) … 具体示例如下
    • Dim 1 / rank 1: 以 size 2 为例
      >>> a = torch.randn(2)   ## 随机,
      >>> a: tensor([1.4785, 0.6089])>>> a = torch.Tensor(2)   ## 接收维度, unintialized 不推荐
      >>> a: tensor([5.4086e+26, 4.5907e-41])
      >>> a = torch.Tensor([1,2])   ## 同 torch.tensor([1,2]) 接收具体数据
      >>> a: tensor([1, 2])>>> a = torch.from_numpy(np_data)  ## 数据维持不变,类型一一对应>>> a = torch.full([2],7)   ## 全部填充为一样的值   
      >>> a: tensor([7, 7])>>> a = torch.arange(0,10)   ## arange
      >>> a: tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>> a = torch.linspace(0,10, steps=4)   ##  
      >>> a: tensor([ 0.0000,  3.3333,  6.6667, 10.0000])
      >>> a = torch.logspace(0,10, steps=4) 
      >>> a: tensor([1.0000e+00, 2.1544e+03, 4.6416e+06, 1.0000e+10])
      
    • Dim 2 / rank 2: 以 size [2,3] 为例
      >>> a = torch.randn(2, 3)   ## 随机 
      >>> a: tensor([[ 2.0631, -1.7011,  0.6375],[-1.2104, -1.3341, -0.8187]])>>> a = torch.Tensor(2, 3)   ## 接收维度, unintialized 不推荐   
      >>> a: tensor([[-0.2438, -0.9554, -0.4694],[ 0.8636,  1.6497, -0.8862]])
      >>> a = torch.Tensor([[1,2,3],[4,5,6]])  ## 同 torch.tensor([[1,2,3],[4,5,6]]) 接收具体数据 
      >>> a: tensor([[1., 2., 3.],[4., 5., 6.]])>>> a = torch.from_numpy(np_data)  ## 数据维持不变,类型一一对应>>> a = torch.full([2,3],7)  ## 全部填充为一样的值
      >>> a: tensor([[7, 7, 7],[7, 7, 7]])
      

  • B站视频参考资料

相关文章:

PyTorch 张量数据类型

【数据类型】Python 与 PyTorch 常见数据类型对应: 用 a.type() 获取数据类型,用 isinstance(a, 目标类型) 进行类型合法化检测 >>> import torch >>> a torch.randn(2,3) >>> a tensor([[-1.7818, -0.2472, -2.0684],[ 0.…...

奇思妙想-可以通过图片闻见味道的设计

奇思妙想-可以通过图片闻见味道的设计 偷闲半日享清闲,炭火烧烤乐无边。肉串飘香引客至,笑语欢声绕云间。人生难得几回醉,且把烦恼抛九天。今宵共饮开怀酒,改日再战新篇章。周四的傍晚,难得的闲暇时光让我与几位挚友相…...

装饰者模式(设计模式)

装饰模式就是对一个类进行装饰,增强其方法行为,在装饰模式中,作为原来的这个类使用者还不应该感受到装饰前与装饰后有什么不同,否则就破坏了原有类的结构了,所以装饰器模式要做到对被装饰类的使用者透明,这…...

ADB调试命令大全

目录 前言命令大全1.显示当前运行的全部模拟器:adb devices2.启动ADB: adb start-server3.停止ADB: adb kill-server4.安装应用程序: adb install -r [apk文件]5.卸载应用程序: adb uninstall [packagename]6.将手机设备中的文件copy到本地计…...

查看npm版本异常,更新nvm版本解决问题

首先说说遇见的问题,基本上把nvm,npm的坑都排了一遍 nvm版本导致npm install报错 Unexpected token ‘.‘install和查看node版本都正确,结果查看npm版本时候报错 首先就是降低node版本… 可以说基本没用,如果要降低版本的话&…...

计算机行业

计算机行业环境分析 2022.01.12 计算机行业环境分析 计算机专业就业前景 随着科技的进步和信息事业的发展,尤其是计算机技术的发展与网络应用的逐渐普及。计算机已成为人们工作和生活中不可缺少的东西。IT行业迅猛发展,就业工作岗位也比比皆是。在最近…...

各种机器学习算法的应用场景分别是什么(比如朴素贝叶斯、决策树、K 近邻、SVM、逻辑回归最大熵模型)?

2023简直被人工智能相关话题席卷的一年。关于机器学习算法的热度,也再次飙升,网络上一些分享已经比较老了。那么今天借着查询和学习的机会,我也来浅浅分享下目前各种机器学习算法及其应用场景。 为了方便非专业的朋友阅读,我会从算…...

SQLite JDBC驱动程序

SQLite JDBC驱动程序下载地址: 下载地址...

Postgre 调优工具pgBadger部署

一,简介: pgBadger(日志分析器)类似于oracle的AWR报告(基于1小时,一天,一周,一月的报告),以图形化的方式帮助DBA更方便的找到隐含问题。 pgbadger是为了提高…...

【云原生】Kubernetes----Helm包管理器

目录 引言 一、Helm概述 1.Helm价值概述 2.Helm的基本概念 3.Helm名词介绍 二、安装Helm 1.下载二进制包 2.部署Helm环境 3.添加补全信息 三、使用Helm部署服务 1.创建chart 2.查看文件信息 3.安装chart 4.卸载chart 5.自定义chart服务部署 6.版本升级 7.版本…...

Bootstrap 5 进度条

Bootstrap 5 进度条 引言 Bootstrap 5 是目前最流行的前端框架之一,它提供了一套丰富的组件和工具,帮助开发者快速构建响应式、移动设备优先的网页。在本文中,我们将重点探讨 Bootstrap 5 中的进度条组件,包括其基本用法、定制选…...

MySQL查询数据库中所有表名表结构及注释以及生成数据库文档

MySQL查询数据库中所有表名表结构及注释 生成数据库文档在后面!!! select t.TABLE_COMMENT -- 数据表注释 , c.TABLE_NAME -- 表名称 , c.COLUMN_COMMENT -- 数据项 , c.COLUMN_NAME -- 英文名称 , -- 字段描述 , upper(c.DATA_TYPE) as …...

Redis缓存穿透、缓存雪崩和缓存击穿的解决方案

Redis缓存穿透、缓存雪崩和缓存击穿的解决方案 引言 Redis作为当前非常流行的内存数据结构存储系统,以其高性能和灵活性被广泛应用于缓存、消息队列、排行榜等多种场景。然而,在实际使用过程中,可能会遇到缓存穿透、缓存雪崩和缓存击穿等问…...

如何解决javadoc一直找不到路径的问题?

目录 一、什么是javadoc二、javadoc为什么会找不到路径三、如何解决javadoc一直找不到路径的问题 一、什么是javadoc Javadoc是一种用于生成Java源代码文档的工具,它可以帮助开发者生成易于阅读和理解的文档。Javadoc通过解析Java源代码中的注释,提取其…...

redis 笔记2之哨兵

文章目录 一、哨兵1.1 简介1.2 实操1.2.1 sentinel.conf1.2.2 问题1.2.3 哨兵执行流程和选举原理1.2.4 使用建议 一、哨兵 1.1 简介 上篇说了复制,有个缺点就是主机宕机之后,从机只会原地待命,并不能升级为主机,这就不能保证对外…...

LVS+Keepalived NGINX+Keepalived 高可用群集实战部署

Keepalived及其工作原理 Keepalived 是一个基于VRRP协议来实现的LVS服务高可用方案,可以解决静态路由出现的单点故障问题。 VRRP协议(虚拟路由冗余协议) 是针对路由器的一种备份解决方案由多台路由器组成一个热备组,通过共用的…...

Mybatis做批量操作

动态标签foreach,做过批量操作,但是foreach只能处理记录数不多的批量操作,数据量大了后,先不说效率,能不能成功操作都是问题,所以这里讲一讲Mybatis正确的批量操作方法: 在获取opensession对象…...

Python | 中心极限定理介绍及实现

统计学是数据科学项目的重要组成部分。每当我们想从数据集的样本中对数据集的总体进行任何推断,从数据集中收集信息,或者对数据集的参数进行任何假设时,我们都会使用统计工具。 中心极限定理 定义:中心极限定理,通俗…...

探索Napier:Kotlin Multiplatform的日志记录库

探索Napier:Kotlin Multiplatform的日志记录库 在现代软件开发中,日志记录是不可或缺的部分,它帮助开发者追踪应用的行为和调试问题。对于Kotlin Multiplatform项目而言,能够在多个平台上统一日志记录的方法显得尤为重要。Napier…...

MySQL基础——SQL语句

目录 1.SQL通用语法 2.SQL分类 3 DDL 3.1数据库操作 3.1.1查询 3.1.2创建 3.1.3删除 3.1.4使用 3.2表操作 3.2.1查询 3.2.2创建 3.2.3数据类型 3.2.4表修改(alter打头) 3.2.5表删除(drop/truncate打头) 3.3 DDL总结…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

三体问题详解

从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...

comfyui 工作流中 图生视频 如何增加视频的长度到5秒

comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...