当前位置: 首页 > news >正文

【Python】在 Pandas 中使用 AdaBoost 进行分类


我们都找到天使了
说好了 心事不能偷藏着
什么都 一起做 幸福得 没话说
把坏脾气变成了好沟通
我们都找到天使了 约好了
负责对方的快乐
阳光下 的山坡 你素描 的以后
怎么抄袭我脑袋 想的
                     🎵 薛凯琪《找到天使了》


在数据科学和机器学习的工作流程中,Pandas 是一个非常强大的数据操作和分析工具库。结合 Pandas 和 AdaBoost 分类算法,可以高效地进行数据预处理和分类任务。本文将介绍如何在 Pandas 中使用 AdaBoost 进行分类。

什么是 AdaBoost?

AdaBoost(Adaptive Boosting)是一种集成学习算法,通过结合多个弱分类器来提升分类性能。每个弱分类器都专注于之前分类错误的样本,最终形成一个强分类器。AdaBoost 适用于各种分类任务,具有很高的准确性和适应性。

使用 AdaBoost 的步骤

数据准备:使用 Pandas 加载和预处理数据。
模型训练:使用 Scikit-Learn 实现 AdaBoost 算法进行模型训练。
模型评估:评估模型的性能。

安装必要的库

在开始之前,请确保你已经安装了 Pandas 和 Scikit-Learn。你可以使用以下命令进行安装:

pip install pandas scikit-learn

步骤一:数据准备

我们将使用一个示例数据集,并通过 Pandas 进行加载和预处理。假设我们使用的是著名的 Iris 数据集。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris# 加载 Iris 数据集
iris = load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
df['target'] = iris.target# 显示前几行数据
print(df.head())

步骤二:模型训练

在这一步中,我们将使用 Scikit-Learn 提供的 AdaBoostClassifier 进行模型训练。

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score# 分割数据集为训练集和测试集
X = df.drop(columns=['target'])
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 初始化弱分类器(决策树)
weak_classifier = DecisionTreeClassifier(max_depth=1)# 初始化 AdaBoost 分类器
adaboost = AdaBoostClassifier(base_estimator=weak_classifier, n_estimators=50, learning_rate=1.0, random_state=42)# 训练模型
adaboost.fit(X_train, y_train)# 预测
y_pred = adaboost.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")

步骤三:模型评估

我们已经在上面的代码中计算了模型的准确性。除此之外,我们还可以绘制混淆矩阵和分类报告,以更详细地评估模型性能。

from sklearn.metrics import confusion_matrix, classification_report
import seaborn as sns
import matplotlib.pyplot as plt# 混淆矩阵
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()# 分类报告
report = classification_report(y_test, y_pred, target_names=iris.target_names)
print(report)

结论

通过上述步骤,我们展示了如何使用 Pandas 和 Scikit-Learn 实现 AdaBoost 分类。具体步骤包括数据准备、模型训练和模型评估。AdaBoost 是一种强大的集成学习算法,通过结合多个弱分类器来提高分类性能。结合 Pandas 的数据处理能力和 Scikit-Learn 的机器学习工具,可以高效地完成分类任务。

相关文章:

【Python】在 Pandas 中使用 AdaBoost 进行分类

我们都找到天使了 说好了 心事不能偷藏着 什么都 一起做 幸福得 没话说 把坏脾气变成了好沟通 我们都找到天使了 约好了 负责对方的快乐 阳光下 的山坡 你素描 的以后 怎么抄袭我脑袋 想的 🎵 薛凯琪《找到天使了》 在数据科学和机器学习的工作…...

持续总结中!2024年面试必问 20 道并发编程面试题(九)

上一篇地址:持续总结中!2024年面试必问 20 道并发编程面试题(八)-CSDN博客 十七、请解释什么是Callable和FutureTask。 Callable和FutureTask是Java并发API中的重要组成部分,它们用于处理可能产生结果的异步任务。 …...

Linux:线程池

Linux:线程池 线程池概念封装线程基本结构构造函数相关接口线程类总代码 封装线程池基本结构构造与析构初始化启动与回收主线程放任务其他线程读取任务终止线程池测试线程池总代码 线程池概念 线程池是一种线程使用模式。线程过多会带来调度开销,进而影…...

集成学习方法:Bagging与Boosting的应用与优势

个人名片 🎓作者简介:java领域优质创作者 🌐个人主页:码农阿豪 📞工作室:新空间代码工作室(提供各种软件服务) 💌个人邮箱:[2435024119qq.com] &#x1f4f1…...

JEnv-for-Windows 2 java版本工具的安装使用踩坑

0.环境 windows11pro 1.工具下载 GitHub - Mu-L/JEnv-for-Windows: Change your current Java version with one line or JEnv-for-Windows:Change your current Java version with one line - GitCode 2.执行jenv 初始化 2.1 问题:PowerShell 未对文件\XXX.…...

linux中: IDEA 由于JVM 设置内存过小,导致打开项目闪退问题

1. 找到idea安装目录 由于无法打开idea,只能找到idea安装目录 在linux(debian/ubuntu)中idea的插件默认安装位置和配置文件在哪里? 默认路径: /home/当前用户名/.config/JetBrains/IntelliJIdea2020.具体版本号/options2. 找到jvm配置文件 IDEA安装…...

d3.js获取流程图不同的节点

在D3.js中,获取流程图中不同的节点通常是通过选择SVG元素并使用数据绑定来实现的。流程图的节点可以通过BPMN、JSON或其他数据格式定义,然后在D3.js中根据这些数据动态生成和选择节点。 以下是一个基本的示例,展示如何使用D3.js选择和操作流…...

MFC socket编程-服务端和客户端流程

MFC 提供了一套丰富的类库来简化 Windows 应用程序的网络编程。以下是使用 MFC 进行 socket 编程时服务端和客户端的基本流程: 服务端流程: 初始化 Winsock: 调用 AfxSocketInit 初始化 Winsock 库。 创建 CSocket 或 CAsyncSocket 对象&am…...

22.1 正则表达式-定义正则表达式、正则语法

1.定义正则表达式 正则表达式意在描述隐藏在数据中的某种模式或规则。 例如:下面的几个字符串看似各不相同: slimshady999roger1813Wagner但看似不同的数据却隐藏着相同的特征: 仅由英语字母和数字组成英语字母有小写也有大写总字符数介于 …...

网络数据包抓取与分析工具wireshark的安及使用

WireShark安装和使用 WireShark是非常流行的网络封包分析工具,可以截取各种网络数据包,并显示数据包详细信息。常用于开发测试过程中各种问题定位。 1 任务目标 1.1 知识目标 了解WireShark的过滤器使用,通过过滤器可以筛选出想要分析的内容 掌握Wir…...

Docker镜像技术剖析

目录 1、概述1.1 什么是镜像?1.2 联合文件系统UnionFS1.3 bootfs和rootfs1.4 镜像结构1.5 镜像的主要技术特点1.5.1 镜像分层技术1.5.2 写时复制(copy-on-write)策略1.5.3 内容寻址存储(content-addressable storage)机制1.5.4 联合挂载(union mount)技术 2.机制原理…...

log4j漏洞学习

log4j漏洞学习 总结基础知识属性占位符之Interpolator(插值器)模式布局日志级别 Jndi RCE CVE-2021-44228环境搭建漏洞复现代码分析日志记录/触发点消息格式化 Lookup 处理JNDI 查询触发条件敏感数据带外漏洞修复MessagePatternConverter类JndiManager#l…...

架构设计 - WEB项目的基础序列化配置

摘要:web项目中做好基础架构(redis,json)的序列化配置有重要意义 支持复杂数据结构:Redis 支持多种不同的数据结构,如字符串、哈希表、列表、集合和有序集合。在将这些数据结构存储到 Redis 中时,需要将其序列化为字节…...

java(JVM)

JVM Java的JVM(Java虚拟机)是运行Java程序的关键部件。它不直接理解或执行Java源代码,而是与Java编译器生成的字节码(Bytecode)进行交互。下面是对Java JVM更详尽的解释: 1.字节码: 当你使用J…...

【网络安全】【深度学习】【入侵检测】SDN模拟网络入侵攻击并检测,实时检测,深度学习【二】

文章目录 1. 习惯终端2. 启动攻击3. 接受攻击4. 宿主机查看h2机器 1. 习惯终端 上次把ubuntu 22自带的终端玩没了,治好用xterm: 以通过 AltF2 然后输入 xterm 尝试打开xterm 。 然后输入这个切换默认的终端: sudo update-alternatives --co…...

飞腾银河麒麟V10安装Todesk

下载安装包 下载地址 https://www.todesk.com/linux.html 安装 yum makecache yum install libappindicator-gtk3-devel.aarch64 rpm -ivh 下载的安装包文件后台启动 service todeskd start修改配置 编辑 /opt/todesk/config/config.ini 移除自动更新临时密码 passupda…...

JWT令牌、过滤器Filter、拦截器Interceptor

目录 JWT令牌 简介 JWT生成 解析JWT 登陆后下发令牌 过滤器(Filter) Filter快速入门 Filter拦截路径 过滤器链 登录校验Filter-流程 拦截器(Interceptor) Interceptor 快速入门 拦截路径 登录校验流程 JWT令牌 简介 全称:JSON Web Token(https://iwt.io/) …...

iText7画发票PDF——小tips

itext7教程: 1、https://blog.csdn.net/allway2/article/details/124295097 2、https://max.book118.com/html/2017/0720/123235195.shtm 3、https://www.cnblogs.com/fonks/p/15090635.html 4、https://www.cnblogs.com/sky-chen/p/13026203.html 5、官方&#xff…...

跟着刘二大人学pytorch(第---10---节课之卷积神经网络)

文章目录 0 前言0.1 课程链接:0.2 课件下载地址: 回忆卷积卷积过程(以输入为单通道、1个卷积核为例)卷积过程(以输入为3通道、1个卷积核为例)卷积过程(以输入为N通道、1个卷积核为例&#xff09…...

transformer实战

1.pipeline() 首先下载transformer,之后 from transformers import pipeline# 加载一个用于文本分类的pipeline # Use a pipeline as a high-level helperpipe pipeline("zero-shot-classification", model"https://hf-mirror.com/morit/chinese_…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子&#xff08…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...