39、基于深度学习的(拼音)字符识别(matlab)
1、原理及流程
深度学习中常用的字符识别方法包括卷积神经网络(CNN)和循环神经网络(RNN)。
-
数据准备:首先需要准备包含字符的数据集,通常是手写字符、印刷字符或者印刷字体数据集。
-
数据预处理:对数据集进行预处理,包括归一化、去噪、裁剪等处理,以便更好地输入到深度学习模型中。
-
模型选择:选择合适的深度学习模型,常用的字符识别模型包括CNN和RNN。CNN主要用于图像数据的特征提取,RNN主要用于序列数据的建模。
-
模型构建:根据数据集的特点和需求构建深度学习模型,设置合适的层数、节点数和激活函数等参数。
-
模型训练:使用已标记好的数据集对模型进行训练,通过反向传播算法不断调整模型参数,使其能够更好地拟合数据集。
-
模型评估:使用未标记的数据集对训练好的模型进行评估,评估模型的准确率、召回率、F1值等指标。
-
模型优化:根据评估结果对模型进行调优,可以对模型结构、参数、数据集等方面进行优化。
-
预测与应用:使用训练好的模型对新数据进行字符识别预测,应用到实际场景中,如车牌识别、验证码识别等领域。
2、准备工作
1)无噪声拼音字符的生成
代码
function [alphabet,targets] = prprob()letterA = [0 0 1 0 0 ...0 1 0 1 0 ...0 1 0 1 0 ...1 0 0 0 1 ...1 1 1 1 1 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterB = [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ]';letterC = [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterD = [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ]';letterE = [1 1 1 1 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 1 ]';letterF = [1 1 1 1 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ]';letterG = [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 1 1 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterH = [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterI = [0 1 1 1 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 1 1 1 0 ]';letterJ = [1 1 1 1 1 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...1 0 1 0 0 ...0 1 0 0 0 ]';letterK = [1 0 0 0 1 ...1 0 0 1 0 ...1 0 1 0 0 ...1 1 0 0 0 ...1 0 1 0 0 ...1 0 0 1 0 ...1 0 0 0 1 ]';letterL = [1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 1 1 1 1 ]';letterM = [1 0 0 0 1 ...1 1 0 1 1 ...1 0 1 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterN = [1 0 0 0 1 ...1 1 0 0 1 ...1 1 0 0 1 ...1 0 1 0 1 ...1 0 0 1 1 ...1 0 0 1 1 ...1 0 0 0 1 ]';letterO = [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterP = [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ...1 0 0 0 0 ...1 0 0 0 0 ...1 0 0 0 0 ]';letterQ = [0 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 1 0 1 ...1 0 0 1 0 ...0 1 1 0 1 ]';letterR = [1 1 1 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ...1 1 1 1 0 ...1 0 1 0 0 ...1 0 0 1 0 ...1 0 0 0 1 ]';letterS = [0 1 1 1 0 ...1 0 0 0 1 ...0 1 0 0 0 ...0 0 1 0 0 ...0 0 0 1 0 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterT = [1 1 1 1 1 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ]';letterU = [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...0 1 1 1 0 ]';letterV = [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...0 1 0 1 0 ...0 0 1 0 0 ]';letterW = [1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 0 0 1 ...1 0 1 0 1 ...1 1 0 1 1 ...1 0 0 0 1 ]';letterX = [1 0 0 0 1 ...1 0 0 0 1 ...0 1 0 1 0 ...0 0 1 0 0 ...0 1 0 1 0 ...1 0 0 0 1 ...1 0 0 0 1 ]';letterY = [1 0 0 0 1 ...1 0 0 0 1 ...0 1 0 1 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ...0 0 1 0 0 ]';letterZ = [1 1 1 1 1 ...0 0 0 0 1 ...0 0 0 1 0 ...0 0 1 0 0 ...0 1 0 0 0 ...1 0 0 0 0 ...1 1 1 1 1 ]';alphabet = [letterA,letterB,letterC,letterD,letterE,letterF,letterG,letterH,...letterI,letterJ,letterK,letterL,letterM,letterN,letterO,letterP,...letterQ,letterR,letterS,letterT,letterU,letterV,letterW,letterX,...letterY,letterZ];targets = eye(26);
试图效果
无噪声A B C X Y Z视图




2)有噪声拼音字符的生成
代码
有噪声A B C X Y Z视图
numNoise = 30;
Xn = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*0.2,0),1);
Tn = repmat(T,1,numNoise);
视图效果




3、 创建第一个神经网络
说明
针对模式识别建立的具有 25 个隐藏神经元的前馈神经网络。
由于神经网络以随机初始权重进行初始化,因此每次运行该示例进行训练后的结果都略有不同。
代码
%25 个隐藏神经元的前馈神经网络。
setdemorandstream(pi);
net1 = feedforwardnet(25);
%显示网络
view(net1);
视图效果

4、 训练第一个神经网络
说明
无噪声拼音字符数据集进行训练,当网络针对训练集或验证集不再可能有改善时,训练停止。
函数 train 将数据划分为训练集、验证集和测试集。验证集和测试集。训练集用于更新网络,验证集用于在网络过拟合训练数据之前停止网络,从而保持良好的泛化。测试集用作完全独立的测量手段,用于衡量网络针对新样本的预期表现。
代码
%当网络针对训练集或验证集不再可能有改善时,训练停止。
net1.divideFcn = '';
%函数 train 将数据划分为训练集、验证集和测试集。
%验证集和测试集。训练集用于更新网络,验证集用于在网络过拟合训练数据之前停止网络,从而保持良好的泛化。测试集用作完全独立的测量手段,用于衡量网络针对新样本的预期表现。
net1 = train(net1,X,T,nnMATLAB);
视图结果

5、 训练第二个神经网络
说明
针对含噪数据训练第二个网络,并将其泛化能力与第一个网络进行比较。
代码
net2 = feedforwardnet(25);
net2 = train(net2,Xn,Tn,nnMATLAB);
视图效果

6、测试两个神经网络
说明
用测试数据集对训练好的网络1和网络2进行测试,X轴表示噪声强度Y轴表示误差百分比
代码
noiseLevels = 0:.05:1;
numLevels = length(noiseLevels);
percError1 = zeros(1,numLevels);
percError2 = zeros(1,numLevels);
for i = 1:numLevelsXtest = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*noiseLevels(i),0),1);Y1 = net1(Xtest);percError1(i) = sum(sum(abs(Tn-compet(Y1))))/(26*numNoise*2);Y2 = net2(Xtest);percError2(i) = sum(sum(abs(Tn-compet(Y2))))/(26*numNoise*2);
endfigure(3)
plot(noiseLevels,percError1*100,'--',noiseLevels,percError2*100);
title('识别误差百分比');
xlabel('噪声水平');
ylabel('误差');
legend('网络1','网络2','Location','NorthWest')
试图效果

7、总结
基于深度学习的拼音字符识别在MATLAB中的总体流程如下:
-
数据集准备:收集包含拼音字符的数据集,可以是经过标记的拼音字符图片或者声音数据。
-
数据预处理:对数据集进行预处理,包括图像去噪、裁剪、归一化等处理,或者对声音数据进行特征提取、转换为图像数据等处理。
-
构建深度学习模型:选择适合拼音字符识别任务的深度学习模型,可以选择卷积神经网络(CNN)、循环神经网络(RNN)或者组合模型等。
-
模型训练:使用数据集对构建好的深度学习模型进行训练,调整模型参数使其能够更好地拟合数据。
-
模型评估:使用未标记的数据集对训练好的模型进行评估,评估模型的准确率、召回率、F1值等指标。
-
模型优化:根据评估结果对模型进行调优,可以调整模型结构、超参数,增加数据增强等方式来提高模型性能。
-
模型应用:将训练好的深度学习模型用于拼音字符识别任务,可以将其应用到实际场景中,如语音识别、文字转换等任务中。
以上是基于MATLAB的深度学习拼音字符识别的总体流程,具体实现细节可以根据具体需求和数据集的特点进行调整和优化。
主程序代码
%% 字符识别
%prprob 定义了一个包含 26 列的矩阵 X,每列对应一个字母。定义一个字母的 5×7 位图。
[X,T] = prprob;
%plotchar第三个字母 C 绘制为一个位图。
% figure(1)
% plotchar(X(:,3))
% title('不含噪声')
%% 创建第一个神经网络
%25 个隐藏神经元的前馈神经网络。
setdemorandstream(pi);
net1 = feedforwardnet(25);
%显示网络
view(net1);%% 训练第一个神经网络
%当网络针对训练集或验证集不再可能有改善时,训练停止。
net1.divideFcn = '';
%函数 train 将数据划分为训练集、验证集和测试集。
%验证集和测试集。训练集用于更新网络,验证集用于在网络过拟合训练数据之前停止网络,从而保持良好的泛化。测试集用作完全独立的测量手段,用于衡量网络针对新样本的预期表现。
net1 = train(net1,X,T,nnMATLAB);
%% 训练第二个神经网络
%针对含噪数据训练第二个网络,并将其泛化能力与第一个网络进行比较。
%数据集加噪声
numNoise = 30;
Xn = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*0.2,0),1);
Tn = repmat(T,1,numNoise);
figure(2)
plotchar(Xn(:,3))
title('含噪声')
%创建并训练第二个网络。
net2 = feedforwardnet(25);
net2 = train(net2,Xn,Tn,nnMATLAB);%% 测试两个神经网络
noiseLevels = 0:.05:1;
numLevels = length(noiseLevels);
percError1 = zeros(1,numLevels);
percError2 = zeros(1,numLevels);
for i = 1:numLevelsXtest = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*noiseLevels(i),0),1);Y1 = net1(Xtest);percError1(i) = sum(sum(abs(Tn-compet(Y1))))/(26*numNoise*2);Y2 = net2(Xtest);percError2(i) = sum(sum(abs(Tn-compet(Y2))))/(26*numNoise*2);
endfigure(3)
plot(noiseLevels,percError1*100,'--',noiseLevels,percError2*100);
title('识别误差百分比');
xlabel('噪声水平');
ylabel('误差');
legend('网络1','网络2','Location','NorthWest')
程序文件包
相关文章:
39、基于深度学习的(拼音)字符识别(matlab)
1、原理及流程 深度学习中常用的字符识别方法包括卷积神经网络(CNN)和循环神经网络(RNN)。 数据准备:首先需要准备包含字符的数据集,通常是手写字符、印刷字符或者印刷字体数据集。 数据预处理࿱…...
CCF 矩阵重塑
第一题:矩阵重塑(一) 本题有两种思路 第一种 (不确定是否正确 但是100分) #include<iostream> using namespace std; int main(){int n,m,p,q,i,j;cin>>n>>m>>p>>q;int a[n][m];for(i…...
Aigtek高压放大器在柔性爬行机器人驱动性能研究中的应用
实验名称:柔性爬行机器人的材料测试 研究方向:介电弹性体的最小能量结构是一种利用DE材料的电致变形与柔性框架形变相结合设计的新型柔性驱动器,所谓最小能量是指驱动器在平衡状态时整个系统的能量最小,当系统在外界的电压刺激下就…...
Postman下发流表至Opendaylight
目录 任务目的 任务内容 实验原理 实验环境 实验过程 1、打开ODL控制器 2、网页端打开ODL控制页面 3、创建拓扑 4、Postman中查看交换机的信息 5、L2层流表下发 6、L3层流表下发 7、L4层流表下发 任务目的 1、掌握OpenFlow流表相关知识,理解SDN网络中L…...
C语言王国——数组的旋转(轮转数组)三种解法
目录 一、题目 二、分析 2.1 暴力求解法 2.2 找规律 2.3 追求时间效率,以空间换时间 三、结论 一、题目 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出…...
MySQL中CAST和CONVERT函数都用于数据类型转换
在 MySQL 中,CAST() 和 CONVERT() 函数都用于数据类型转换。虽然这两个函数在大多数情况下可以互换使用,但它们之间还是有一些细微的差别。 官方文档地址 https://dev.mysql.com/doc/refman/8.4/en/cast-functions.html#function_cast CAST() 函数 C…...
速盾:cdn影响seo吗?
CDN (Content Delivery Network) 是一个分布式网络架构,用于在全球范围内加速网站内容的传输和分发。它通过将网站的静态资源(例如图片、CSS、JavaScript 文件等)存储在多个服务器上,使用户可以从最接近他们位置的服务器上获取这些…...
期末算法复习
0-1背包问题(动态规划) 例题 算法思想: 动态规划的核心思想是将原问题拆分成若干个子问题,并利用已解决的子问题的解来求解更大规模的问题。 主要是状态转移方程和状态 算法描述: 初始化一个二维数组dp࿰…...
可穿戴设备:苹果“吃老底”、华为“忙复苏”、小米“再扩容”
配图来自Canva可画 随着产品功能的创新,可穿戴设备不再被简单地视为手机的延伸,而是被当成一种独立的、具有独特功能和优势的产品,受到了越来越多人的青睐。 一方面,技术的进步使得可穿戴设备在功能、性能和使用体验上得到显著提…...
AI数据分析:集中度分析和离散度分析
在deepseek中输入提示词: 你是一个Python编程专家,要完成一个Python脚本编写的任务,具体步骤如下: 读取Excel表格:"F:\AI自媒体内容\AI行业数据分析\toolify月榜\toolify2023年-2024年月排行榜汇总数据.xlsx&qu…...
redis的分布式session和本地的session有啥区别
在web应用开发中,Session用于在多个请求之间存储用户数据。传统上,Session存储在服务器的内存中,即本地Session。然而,随着应用规模和复杂度的增加,特别是在分布式环境中,本地Session会遇到一些问题。这时&…...
SSH概念、用途、详细使用方法
还是大剑师兰特:曾是美国某知名大学计算机专业研究生,现为航空航海领域高级前端工程师;CSDN知名博主,GIS领域优质创作者,深耕openlayers、leaflet、mapbox、cesium,canvas,webgl,ech…...
关于电脑文件的规划思考
概述 设置C、D、E、F 四个盘 C盘:系统数据使用,操作系统、其他软件需要用到的系统性资源 D盘:应用软件区 的使用,数据库、navacat、idea、visual studio、浏览器、向日葵、虚拟机…… E盘:工作区:公司资料…...
DVWA - Brute Force
DVWA - Brute Force 等级:low 直接上bp弱口令爆破,设置变量,攻击类型最后一个,payload为用户名、密码简单列表 直接run,长度排序下,不一样的就是正确的用户名和密码 另解: 看一下…...
安卓手机文件找回方法汇总,3个技巧,不再焦虑
我们用手机来储存各种重要的信息和文件,无论是珍贵的照片、重要的文档还是喜爱的音乐,用来记录和分享生活中的每一个瞬间。但如果不小心删除了这些文件,我们可能会面临数据丢失的风险,进而产生焦虑和不安。本文将为您揭秘手机文件…...
{}初始化
文章目录 ()初始化的问题易混淆弱检查 {}初始化{}初始化是c11推荐的初始化,解决了上述的问题 ()则被用于强制类型转换 ()初始化的问题 易混淆 string s();不能确定是函数定义还是对象定义 弱检查 int a(3.14);3.14 可以通过 int 定义 {}初始化 {}初始化是c11推…...
小程序外卖开发中的关键技术与实现方法
小程序外卖服务凭借其便捷性和灵活性,正成为现代餐饮行业的重要组成部分。开发一个功能完善的小程序外卖系统,需要掌握一系列关键技术和实现方法。本文将介绍小程序外卖开发中的核心技术,并提供具体的代码示例,帮助开发者理解和实…...
大数据平台之运维管理工具
大数据平台的自动化运维管理工具能够大幅提升集群管理效率,减少人为错误,提高系统的稳定性和性能。这些工具通常提供集群监控、配置管理、自动化任务执行、安全管理和故障处理等功能。以下是一些主要的大数据平台自动化运维管理工具的详细介绍࿱…...
[vue3]组件通信
自定义属性 父组件中给子组件绑定属性, 传递数据给子组件, 子组件通过props选项接收数据 props传递的数据, 在模版中可以直接使用{{ message }}, 在逻辑中使用props.message defineProps defineProps是编译器宏函数, 就是一个编译阶段的标识, 实际编译器解析时, 遇到后会进行…...
【react小项目】bmi-calculator
bmi-calculator 目录 bmi-calculator初始化项目01大致布局01代码 02完善样式02代码 03输入信息模块03代码 04 使用图表04代码 05详细记录信息渲染05代码 06 让数据变成响应式的06-1输入框的数据处理06-2图表,和记录信息的区域数据处理 07 删除功能,撤销功…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...
实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...
