当前位置: 首页 > news >正文

[鹤城杯 2021]BabyRSA

题目:

from Crypto.Util.number import getPrime, bytes_to_long
from secret import flagp = getPrime(1024)
q = getPrime(1024)
n = p * q
e = 65537
hint1 = p >> 724
hint2 = q % (2 ** 265)
ct = pow(bytes_to_long(flag), e, n)
print(hint1)
print(hint2)
print(n)
print(ct)hint1= 1514296530850131082973956029074258536069144071110652176122006763622293335057110441067910479
hint2= 40812438243894343296354573724131194431453023461572200856406939246297219541329623
n= 21815431662065695412834116602474344081782093119269423403335882867255834302242945742413692949886248581138784199165404321893594820375775454774521554409598568793217997859258282700084148322905405227238617443766062207618899209593375881728671746850745598576485323702483634599597393910908142659231071532803602701147251570567032402848145462183405098097523810358199597631612616833723150146418889589492395974359466777040500971885443881359700735149623177757865032984744576285054725506299888069904106805731600019058631951255795316571242969336763938805465676269140733371287244624066632153110685509892188900004952700111937292221969
ct= 19073695285772829730103928222962723784199491145730661021332365516942301513989932980896145664842527253998170902799883262567366661277268801440634319694884564820420852947935710798269700777126717746701065483129644585829522353341718916661536894041337878440111845645200627940640539279744348235772441988748977191513786620459922039153862250137904894008551515928486867493608757307981955335488977402307933930592035163126858060189156114410872337004784951228340994743202032248681976932591575016798640429231399974090325134545852080425047146251781339862753527319093938929691759486362536986249207187765947926921267520150073408188188
解题分析:
因此根据题目中给出的p高300位和q低265位,n=pq  =>  n=p0q0(mod 2265)可得p低265位 p0=nq0-1(mod 2265)
题目中q0= q%(2265)=hint2  =>  q0-1= inverse_mod(q0,2265)
则p低265位p0=n*inverse_mod(q0,2265)(mod 2265)
则p的高300位和低265位之和为:
pbar=ph+pl=(p1<<724) + n*inverse_mod(q0,2265)(mod 2265)
p中间的459位通过copperSmith求解
由于构造f=pbar+x*2265无解,尝试对2265抬高2^6(即抬高64)进行爆破
则 f需要加上i*2265,其中i in range(64)
所以在copperSmith构造中,f表达式中间项为x*64*2265,对应small_roots参数X=2453

sage:

#sage
p1 = 1514296530850131082973956029074258536069144071110652176122006763622293335057110441067910479
q0 = 40812438243894343296354573724131194431453023461572200856406939246297219541329623
n = 21815431662065695412834116602474344081782093119269423403335882867255834302242945742413692949886248581138784199165404321893594820375775454774521554409598568793217997859258282700084148322905405227238617443766062207618899209593375881728671746850745598576485323702483634599597393910908142659231071532803602701147251570567032402848145462183405098097523810358199597631612616833723150146418889589492395974359466777040500971885443881359700735149623177757865032984744576285054725506299888069904106805731600019058631951255795316571242969336763938805465676269140733371287244624066632153110685509892188900004952700111937292221969
p0=n*invert(q0,2^265)%(2^265)
pbar=(p1<<724)+p0PR.<x> = PolynomialRing(Zmod(n))
for i in range(64):f=pbar+x*(2^265)*64 + i*(2^265)f=f.monic()pp=f.small_roots(X=2^453,beta=0.4)if(pp):print("pp[0]=",pp[0])print("i=",i)breakp=pbar+pp[0]*64*(2^265)+ i*(2^265)
print("p=",p)

python:

#python
from Cryptodome.Util.number import *
import libnum
from gmpy2 import gmpy2hint1 = 1514296530850131082973956029074258536069144071110652176122006763622293335057110441067910479
hint2 = 40812438243894343296354573724131194431453023461572200856406939246297219541329623
n = 21815431662065695412834116602474344081782093119269423403335882867255834302242945742413692949886248581138784199165404321893594820375775454774521554409598568793217997859258282700084148322905405227238617443766062207618899209593375881728671746850745598576485323702483634599597393910908142659231071532803602701147251570567032402848145462183405098097523810358199597631612616833723150146418889589492395974359466777040500971885443881359700735149623177757865032984744576285054725506299888069904106805731600019058631951255795316571242969336763938805465676269140733371287244624066632153110685509892188900004952700111937292221969
ct = 19073695285772829730103928222962723784199491145730661021332365516942301513989932980896145664842527253998170902799883262567366661277268801440634319694884564820420852947935710798269700777126717746701065483129644585829522353341718916661536894041337878440111845645200627940640539279744348235772441988748977191513786620459922039153862250137904894008551515928486867493608757307981955335488977402307933930592035163126858060189156114410872337004784951228340994743202032248681976932591575016798640429231399974090325134545852080425047146251781339862753527319093938929691759486362536986249207187765947926921267520150073408188188
e = 65537
p=133637329398256221348922087205912367118213472434713498908220867690672019569057789598459580146410501473689139466275052698529257254973211963162087316149628000798221014338373126500646873612341158676084318494058522014519669302359038980726479317742766438142835169562422371156257894374341629012755597863752154328407
q=n//p
phi_n=(p-1)*(q-1)
d = gmpy2.invert(e,phi_n)
m = pow(ct,d,n)
print(long_to_bytes(m))

相关文章:

[鹤城杯 2021]BabyRSA

题目&#xff1a; from Crypto.Util.number import getPrime, bytes_to_long from secret import flagp getPrime(1024) q getPrime(1024) n p * q e 65537 hint1 p >> 724 hint2 q % (2 ** 265) ct pow(bytes_to_long(flag), e, n) print(hint1) print(hint2) p…...

西安市工业倍增引导基金子基金申报条件流程和材料程序指南(2024年)

一、基本情况 产业投资基金是以产业发展为首要目标&#xff0c;围绕经济社会发展规划和产业发展政策&#xff0c;发挥“有效市场”作用&#xff0c;支持重点领域、重点产业、重点区域&#xff08;如&#xff1a;全市六大支柱产业、五大新兴产业领域成熟期重点规模以上企业以及“…...

微型丝杆的耐用性和延长使用寿命的关键因素!

无论是机械设备&#xff0c;还是精密传动元件&#xff0c;高精度微型丝杆是各种机械设备中不可或缺的重要组件。它的精度和耐用性直接影响着工作效率和产品品质&#xff0c;在工业技术不断进步的情况下&#xff0c;对微型丝杆的性能要求也越来越高&#xff0c;如何提升微型丝杆…...

音频文件下载后,如何轻松转换格式?

在我们日常的数字生活中&#xff0c;下载各种音频文件是司空见惯的事情。然而&#xff0c;有时候我们可能需要将这些音频文件转换为不同的格式&#xff0c;以适应不同的设备或编辑需求。无论您是希望将下载的音频文件转换为通用的MP3格式&#xff0c;还是需要将其转换为高保真的…...

Intel平台,13600KF+3060Ti,虚拟机安装macOS 14(2024年6月)

距离上次装macOS虚拟机已经有一段时间了&#xff0c;macOS系统现在大版本升级的速度也是越来越快了&#xff0c;由于Office只支持最新三个版本的macOS&#xff0c;所以现在保底也得安装macOS 12了&#xff0c;我这次是用macOS 14做实验&#xff0c;13和12的安装方式和macOS 14一…...

Cookie、Session、Token的关系和区别

关系 Session与Cookie&#xff1a;Session通常依赖于Cookie来工作。当服务器为客户端创建一个Session时&#xff0c;它会在服务器上存储与客户端相关的信息&#xff0c;并将一个唯一的SessionID通过Cookie发送给客户端。客户端在后续的请求中会携带这个Cookie&#xff08;包含…...

Windows 11 中安装 Docker Desktop 并安装镜像

本该主要介绍在 Windows 11 中安装 Docker Desktop 时的一些准备工作&#xff0c;以及该如何下载和安装&#xff0c;然后分别使用管理界面和 Docker 命令安装两个镜像。 一、准备工作 在 Windows 11 中安装 Docker Desktop 前&#xff0c;需要做一些准备。打开 【Windows 功能…...

深入剖析Java线程池之“newWorkStealingPool“

1. 概述 newWorkStealingPool 是Java 8中引入的一个新型线程池,它基于ForkJoinPool实现,并采用了“工作窃取”(Work-Stealing)算法。这种线程池特别适用于可并行化且计算密集型的任务,能够充分利用多核CPU资源,提高任务执行效率。 2. 工作窃取算法(Work-Stealing Algor…...

《跟我一起学“网络安全”》——安全设备

安全设备 一、安全设备–IDS IDS入侵检测 (1)什么是入侵检测&#xff1a; 入侵检测系统&#xff08;intrusion detection system&#xff0c;简称“IDS”&#xff09;是一种对网络传输进行即时监视&#xff0c;在发现可疑传输时发出警报或者采取主动反应措施的网络安全设备。…...

猜测Tomcat如何实现WebSocket协议

一、WebSocket协议的实现 (一)WebSocket是官方的协议接口标准。 (二)如果一门编程语言可以网络连接和并发&#xff0c;就能创建一种WebSocket实现。 (三)同一种编程语言&#xff0c;有不同的协议实现版本和框架。 二、Tomcat实现 在Tomcat容器中实现了对应的WebSocket版本&am…...

uniApp @input事件更改输入框值,值改变了但是页面没更新新的值

<uni-easyinputtype"text"trim"all":inputBorder"false"v-model"customFormData.completePercent"input"(val) > completeOnInput(val)"placeholder"请输入" /> function completeOnInput(val) {let num…...

两行css 实现瀑布流

html <ul ><li><a href"" ><img src"05094532gc6w.jpg" alt"111" /><p>传奇</p></a></li><li><a href"" ><img src"05094532gc6w.jpg" alt"111"…...

Centos7.9部署单节点K8S环境

Centos7.9部署单节点K8S环境 通过Centos extras镜像源安装K8S环境&#xff0c;优点是方便快捷&#xff0c;缺点是版本较低&#xff0c;安装后的版本为1.5.2。 1. 准备工作 关闭selinux [rootlocalhost ~]# cat /etc/selinux/config# This file controls the state of SELin…...

【CV】stable diffusion初步理解

来自gpt-4o Stable diffusion 和DALLE的关系 Stable Diffusion 和 DALL-E 都是生成图像的人工智能模型&#xff0c;但它们有不同的开发背景和技术实现。 Stable Diffusion: 开发者: 由Stability AI开发&#xff0c;并与CompVis和LAION等组织合作。技术: 基于扩散模型&#xf…...

足底筋膜炎最好的恢复办法

足底筋膜炎是一种由足底筋膜受到炎症刺激而引起的疼痛和不适的疾病。其典型症状主要包括&#xff1a; 1、足底疼痛&#xff1a;这是足底筋膜炎最常见的症状。疼痛通常位于足跟部位&#xff0c;患者可能感到刺痛或灼热感。尤其在早晨起床或长时间站立后&#xff0c;这种疼痛感会…...

Fiddler抓包工具介绍

下载 下载:Web Debugging Proxy and Troubleshooting Tools|Fiddler 进去要填一个表 汉化版 百度网盘 请输入提取码 提取码&#xff1a;xq9t 下载过附件之后分别把两个文件 点开fiddler就ok了 配置https fiddler要想抓到https包(解密的),点击tools->options勾选三个对…...

知乎号开始运营了,宣传一波

知乎号开始发布一些小说、散文还有诗歌了&#xff0c;欢迎大家多来关注 知乎链接&#xff1a;姜亚轲 每篇小说都改编成网易云音乐&#xff0c;文章中也有链接&#xff0c;我做的词&#xff0c;Suno编曲和演唱&#xff0c;欢迎大家来听听...

Go 基础丨切片 slice

1. 底层 runtime/slice.go type slice struct {array unsafe.Pointer // 指向底层数组len int // 切片元素数量cap int // 底层数组容量 }reflect/value.go type SliceHeader struct {Data uintptrLen intCap int }2. 创建 根据数组创建 s : arr[0:3]字面…...

哪个牌子充电宝好用?精选四大热门款充电宝品牌!公认好用

在当今快节奏的生活中&#xff0c;充电宝已经成为了我们日常生活中不可或缺的数码伴侣。无论是旅行、出差还是日常通勤&#xff0c;拥有一款好用的充电宝&#xff0c;能够确保我们的手机、平板等设备随时保持充足电量。然而&#xff0c;市场上充电宝品牌繁多&#xff0c;如何选…...

WPF/C#:如何将数据分组显示

WPF Samples中的示例 在WPF Samples中有一个关于Grouping的Demo。 该Demo结构如下&#xff1a; MainWindow.xaml如下&#xff1a; <Window x:Class"Grouping.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x&q…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...