当前位置: 首页 > news >正文

PCA 在图像分析上的应用

同一物体旋转角度求取

直接上代码:

import cv2, os
import numpy as np
import timedef perform_pca(image, num_components):# 将图像转换为浮点型img_float = np.float32(image)img_flatten = img_float.reshape(-1, 2)# 计算均值和协方差矩阵mean, eigenvectors = cv2.PCACompute(img_flatten, mean=None, maxComponents=num_components)return mean, eigenvectorsdef rotate_coords(coords, theta):"""绕原点旋转坐标点集。参数:coords: 坐标点集,每个元素是一个(x, y)的元组。theta: 旋转角度,以弧度为单位。返回:旋转后的坐标点集。"""# 定义旋转矩阵rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]])# 将坐标点集转换为NumPy数组以便进行矩阵运算coords_array = np.array(coords)# 应用旋转矩阵rotated_coords = np.dot(coords_array, rotation_matrix)return rotated_coordsdef judge_direction1(mean, vector, center_x, center_y):v = np.array([center_x - mean[0][0], center_y - mean[0][1]])if np.dot(v, vector) < 0:vector = -vectorreturn vectordef judge_direction2(mean, vector, image, img_path):edge_image = cv2.Canny(image, 50, 200)file_name = img_path.split("/")[-1]save_path = "/home/xxx/下载/mask/result/"x_angle = vector_angle(vector,np.array([1, 0]))edge_non_zero_coords = cv2.findNonZero(edge_image)edge_non_zero_coords = edge_non_zero_coords - mean[0]edge_non_zero_coords = rotate_coords(edge_non_zero_coords, np.radians(x_angle))min_x, min_y = np.min(edge_non_zero_coords, axis=0)[0]max_x, max_y = np.max(edge_non_zero_coords, axis=0)[0]new_image = np.zeros((int(max_y-min_y)+1, int(max_x - min_x)+1), np.uint8)for coord in edge_non_zero_coords:x, y = coord[0]new_image[int(y - min_y), int(x - min_x)] = 255# cv2.imwrite(save_path + file_name, new_image)if max_x - min_x > max_y - min_y:if abs(max_x) > abs(min_x):vector = -vectorelse:if abs(max_y) > abs(min_y):vector = -vectorreturn vectordef get_vector(img_path):image = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)h, w = image.shapecenter_x = int(w / 2)center_y = int(h / 2)non_zero_coords = cv2.findNonZero(image)# 执行PCAnum_components = 2mean, eigenvectors = perform_pca(non_zero_coords, num_components)vector = eigenvectors[0]vector = judge_direction2(mean, vector, image, img_path)return vectordef vector_angle(v1, v2):# 计算点积dot_product = np.dot(v1, v2)# 计算向量的模norm_v1 = np.linalg.norm(v1)norm_v2 = np.linalg.norm(v2)# 计算余弦值cos_theta = dot_product / (norm_v1 * norm_v2)# 计算弧度制的夹角theta_rad = np.arccos(np.clip(cos_theta, -1.0, 1.0))# 将弧度制转换为角度制theta_deg = np.degrees(theta_rad)# 确定角度的方向性cross_product = np.cross(v1, v2)if cross_product < 0:theta_deg = 360 - theta_degreturn 360 - theta_degdef get_angle(img_path1, img_path2):vector1 = get_vector(img_path1)vector2 = get_vector(img_path2)angle = vector_angle(vector1, vector2)print(vector1, vector2, angle)return angleif __name__ == "__main__":img_path1 = "/home/xxx/下载/mask/mask3/0.jpg"img_path2 = "/home/xxx/下载/mask/mask3/32.jpg"get_angle(img_path1, img_path2)

相关文章:

PCA 在图像分析上的应用

同一物体旋转角度求取 直接上代码&#xff1a; import cv2, os import numpy as np import timedef perform_pca(image, num_components):# 将图像转换为浮点型img_float np.float32(image)img_flatten img_float.reshape(-1, 2)# 计算均值和协方差矩阵mean, eigenvectors …...

springboot项目mapper无法自动装配,未找到 ‘userMapper‘ 类型的Bean解决办法.

一开始我看到了这个回答&#xff1a;springboot项目mapper无法自动装配&#xff0c;未找到 ‘userMapper‘ 类型的 Bean解决办法&#xff08;含报错原因&#xff09;_无法自动装配。找不到 usermapper 类型的 bean。-CSDN博客 mapper无法自动装配&#xff0c;未找到 ‘userMap…...

TC3xx A\B SWAP机制的小细节(2)

目录 1.引入 2.TC3xx Swap机制小细节 3.小结 1.引入 上文TC3xx A\B SWAP机制的小细节(1)-CSDN博客主要把OTA的概念&#xff0c;以及MCU的硬件A\B Swap机制做了简单介绍&#xff0c;下面我们来聊聊TC3xx的SWAP机制 2.TC3xx Swap机制小细节 英飞凌TC3xx提供了硬件SOTA机制&…...

双绞线(网线)的制作与测试

实验目的 1、熟悉常用双绞线&#xff08;网线&#xff09;及其制作工具的使用&#xff1b; 2、掌握非屏蔽双绞线的直通线、交叉线的制作及连接方法&#xff1b; 3、掌握双绞线连通性的测试。 设备要求&#xff1a;RJ45压线钳&#xff0c;RJ45水晶头&#xff0c;UTP线缆&…...

高效处理海量慢SQL日志文件:Java与JSQLParser去重方案详解

在大数据处理环境下&#xff0c;慢SQL日志优化是一个必要的步骤&#xff0c;尤其当日志文件达到数GB时&#xff0c;直接操作日志文件会带来诸多不便。本文将介绍如何通过Java和JSQLParser库来解析和去重慢SQL日志&#xff0c;以提高性能和可维护性。 背景 公司生产环境中&…...

企业内部、与合作伙伴/客户文档协作如何高效安全地收集资料?

在企业的日常运营与对外合作中&#xff0c;「文件收集」是一项特别常见的文档协作需求。例如&#xff0c;公司举办项目经验分享大会&#xff0c;组织者需要提前收集演讲者的材料&#xff1b;新项目启动时&#xff0c;项目经理需要快速收集技术方案和报价方案以便招投标和商务活…...

用Unity创造自己的绿洲

“谢谢你能玩我的游戏&#xff01;” 希望将来我也能做出一款影响全世界的游戏&#xff0c;就比如现在的《英雄联盟》&#xff0c;或是电影里的《绿洲》&#xff01;然后也说出这么一句话&#xff1a;谢谢你能玩我的游戏&#xff01; 阶段性的总结一下 那就展示一下最近完成的…...

服务器数据恢复—KVM虚拟机被误删除如何恢复虚拟磁盘文件?

服务器数据恢复环境&故障&#xff1a; 1台服务器&#xff0c;Linux操作系统EXT4文件系统&#xff0c;部署了数台KVM虚拟机&#xff0c;每台虚拟机包含一个qcow2格式的磁盘文件&#xff0c;和一个raw格式的磁盘文件。 工作人员操作失误删除了3台服务器上的KVM虚拟机&#xf…...

工具清单 - 看板工具

# 工具清单 Crepido在新窗口打开 - Create (kanban) boards to track users and projects from flat markdown files. MIT NodejsKanboard在新窗口打开 - Simple and open source visual task board. (Source Code在新窗口打开) MIT PHPmyTinyTodo在新窗口打开 - Simple way t…...

Go微服务: 分布式之发送带有事务消息的示例

分布式之发送带有事务消息 现在做一个RocketMQ的事务消息的 demo 1 &#xff09;生产者 package mainimport ("context""fmt""time""github.com/apache/rocketmq-client-go/v2""github.com/apache/rocketmq-client-go/v2/prim…...

【go】go初始化命令总结

包初始化 test项目目录下执行 go mod init test go mod tidy生成二进制可执行文件 go build -o test .\main.go...

vue音乐播放条

先看效果 再看代码 <template><div class"footer-player z-30 flex items-center p-2"><div v-if"isShow" class"h-12 w-60 overflow-hidden"><div :style"activeStyle" class"open-detail-control-wrap&…...

halcon实现浓淡补正,中间值补正-抽取暗

代码效果 抽取前 中值抽取暗 halcon函数代码 测试图片参数 NoiseCut:16 Gain:1 输入ImagePart NoiseCut Gain *获取直方图 get_domain (ImagePart, Domain) gray_histo_range(Domain,ImagePart,0,255,256, Histo, BinSize) area_center(Domain, NumPixels, Row, Column) …...

太速科技-FMC213V3-基于FMC兼容1.8V IO的Full Camera Link 输入子卡

FMC213V3-基于FMC兼容1.8V IO的Full Camera Link 输入子卡 一、板卡概述 该板卡为了考虑兼容1.8V电平IO&#xff0c;适配Virtex7&#xff0c;Kintex Ultrascale&#xff0c;Virtex ultrasacle FPGA而特制&#xff0c;如果要兼容原来的3.3V 也可以修改硬件参数。板卡支持1路…...

GPU短缺和模型效率的推动

1. 引言 随着全球GPU短缺和云计算成本的不断上升&#xff0c;开发更高效的AI模型成为了当前的焦点。技术如低秩适应&#xff08;LoRA&#xff09;和量化&#xff08;Quantization&#xff09;在优化性能的同时&#xff0c;减少了资源需求。这些技术不仅在当前的AI开发中至关重…...

linux在文件夹中查找文件内容

linux在文件夹中查找文件内容 在Linux中,可以通过以下多个途径,在文件夹中查找文件内容: 1、使用grep命令: grep -r "要查找的内容" /path/to/folder-r参数表示递归地在文件夹及其子文件夹中搜索。/path/to/folder是要搜索的文件夹路径。2、使用ack命令 ack …...

算法:11. 盛最多水的容器

11. 盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明&#xff1a;你…...

Hazelcast 分布式缓存 在Seatunnel中的使用

1、背景 最近在调研seatunnel的时候&#xff0c;发现新版的seatunnel提供了一个web服务&#xff0c;可以用于图形化的创建数据同步任务&#xff0c;然后管理任务。这里面有个日志模块&#xff0c;可以查看任务的执行状态。其中有个取读数据条数和同步数据条数。很好奇这个数据…...

分数限制下,选好专业还是选好学校?

目录 分数限制下&#xff0c;选好专业还是选好学校&#xff1f; 方向一&#xff1a;专业解析 1. 专业选择的重要性 2. 不同专业的优势与挑战 3. 个人专业选择经验分享 4. 实际场景下的“专业VS学校”选择方案 方向二&#xff1a;名校效应分析 1. 名校声誉与品牌效应 2…...

软件改为开机自启动

1.按键 win R,输入“shell:startup”命令, 然后就可以打开启动目录了&#xff0c;如下&#xff1a; 2.然后&#xff0c;把要开机启动的程序的图标拖进去即可。 参考&#xff1a;开机启动项如何设置...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...