当前位置: 首页 > news >正文

【抽代复习笔记】19-群(十三):奇偶置换、循环置换的几个定理及例题

定义:

①在Sn中,能够表示为奇数多个对换乘积的置换称为“奇置换”,能够表示为偶数多个对换乘积的置换称为“偶置换”;

②所有偶置换的集合记为An。

 

例1:(1)计算S1和S2中奇、偶置换的数目;

(2)计算S3中奇偶置换的数目。

解:(1)S2 = {(1),(12)},其中(12)是奇置换,(1) = (12)(12)是偶置换,所以S2中奇偶置换各自的数目均为1个;

(2)S3 = {(1),(12),(13),(23),(123),(132)},其中(12),(13),(23)为奇置换,(1) = (12)(12),(123) = (13)(12),(132) = (12)(13)是偶置换,因此S3中奇偶置换各自的数目均为3个。

 

定理5:n ≥ 2时,Sn中奇、偶置换各占一半,即|An| = n!/2。

证:设|An| = s,|Sn - An| = t,(Sn - An表示Sn中所有奇置换组成的集合)

任取σ∈An,取对换(12)∈Sn,由于σ为偶置换,因此置换 (12)σ 为奇置换,

即 (12)σ∈Sn - An,

从而,根据σ的任意性,可知|An| ≤ |Sn - An|,即s ≤ t;

同理,任取r∈Sn - An,(12)σ ∈ An,

因此有|An| ≥ |Sn - An|,即s ≥ t;

所以有 s = t,也就是说Sn中奇、偶置换的数目相等,彼此各占一半。

 

例2:在S5中,将下列循环的乘积表示为矩阵形式:

(1)(145)(23),(23)(145);

(2)(13)(25),(25)(13)。

解:按从右到左计算:

(1)①先是2和3对换,然后1变4、4变5、5变1,因此表示成矩阵形式如下:

c89b9324f1654557ae071245af4bc7dc.png

②先是1变4、4变5、5变1,然后是2和3对换,因此表示成矩阵形式如下:

7ed848a5bb4a41d79c9caa21df9814b8.png

(2)①先是2和5对换,然后1和3对换,因此表示成矩阵形式如下:

85fdc70bf21545258cf2deca4674ba02.png

②先是1和3对换,然后2和5对换,因此表示成矩阵形式如下:

7296dcc4df074bfbb161a607d4584e64.png

 

定理6:两个不相交的循环置换的乘积可交换。

 

例3:求

8e8988bde58246ba882c527f2f408e5f.png

的逆元。

解:σ5 = (1245),则由:

59d9d9c061614e4f81b90bd6f9ae0206.png

可求出σ5的逆元,因为(1245)(1542) = (1),因此σ5的逆元为(1542) = (5421),即:

56c7e002ebf84b64a362274f316c5641.png

 

定理7:k-循环的逆元等于反序写出的循环,即

a1871f948b69416da4b89d9733d1eb1d.png

 

例4:在S6中,计算下列置换的阶:

(1)(235);

(2)(1254);

(3)(13)(256);

(4)(13)(24)。

解:(1)(235)^2 = (235)(235) = (253),(235)^3 = (235)(235)(235) = (253)(235) = (1),所以|(235)| = 3;

(2)(1254)^2 = (1254)(1254) = (15)(24),(1254)^3 = (1254)(1254)(1254) = (15)(24)(1254) = (1452),(1254)^4 = (1254)(1254)(1254)(1254) = (1452)(1254) = (1),所以|(1254)| = 4;

(3)|(13)(256)| = |(13)|×|(256)| = 2×3 = 6;

(4)[(13)(24)]^2 = (13)(24)(13)(24) = (1),所以|(13)(24)| = 2。

 

定理8:

(1)k-循环的阶等于k;

(2)如果一个置换σ可以表示为一个k-循环和一个l-循环的乘积,那么|σ|等于k,l的最小公倍数。

 

(待续……) 

 

相关文章:

【抽代复习笔记】19-群(十三):奇偶置换、循环置换的几个定理及例题

定义: ①在Sn中,能够表示为奇数多个对换乘积的置换称为“奇置换”,能够表示为偶数多个对换乘积的置换称为“偶置换”; ②所有偶置换的集合记为An。 例1:(1)计算S1和S2中奇、偶置换的数目&…...

RT-Thread简介及启动流程分析

阅读引言: 最近在学习RT-Thread的内部机制,觉得这个启动流程和一些底层原理还是挺重要的, 所以写下此文。 目录 1, RT-Thread简介 2,RT-Thread任务的几种状态 3, 学习资源推荐 4, 启动流程分…...

MCU嵌入式AI开发笔记-视频笔记同步更新

MCU嵌入式AI开发笔记 抖音B站等站点笔记视频同步更新 01嵌入式AI大的方向 STM32跑神经网络 http://news.eeworld.com.cn/mp/EEWorld/a134877.jspx 为什么可以在STM32上面跑神经网络?简而言之就是使用STM32CubeMX中的X-Cube-AI扩展包将当前比较热门的AI框架进行C代码的转化,…...

DoIP——step2:车辆发现

文章目录 前言一、IP地址配置1.1 AutoIP1.2 DHCP1.3 DoIP实体的IP地址配置流程二、车辆发现车辆声明报文内容如下:前言 完成诊断设备到车辆的物理连接并通过激活线使能诊断连接后边缘节点将会将连接状态传递至应用层,在开始车辆发现过程之前,需要先进行各自的IP地址配置,获…...

【动态规划】0-1背包问题

【动态规划】0-1背包问题 题目:现在有四个物品,背包总容量为8,背包最多能装入价值为多少的物品? 我的图解 表格a【i】【j】表示的是容量为j的背包装入前i个物品的最大价值。 拿a【1】【1】来说,它的值就是背包容量为1,只考虑…...

WordPress 高级缓存插件 W3 Total Cache Pro 详细配置教程

说起来有关 WordPress 缓存插件明月已经发表过不少文章了,但有关 W3 Total Cache Pro 这个 WordPress 高级缓存插件除了早期【网站缓存插件 W3 Total Cache,适合自己的才是最好的!】一文后就很少再提及了,最近因为明月另一个网站【玉满斋】因为某些性能上的需要准备更换缓存…...

每日一题——Python实现PAT乙级1012 数字分类(举一反三+思想解读+逐步优化)五千字好文

一个认为一切根源都是“自己不够强”的INTJ 个人主页:用哲学编程-CSDN博客专栏:每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 我的写法 代码优点 代码缺点 时间复杂度 空间复杂度 代码改进建议 我要更强 哲…...

Unity2D游戏制作入门 | 13 ( 之人物三段攻击 )

上期链接:Unity2D游戏制作入门 | 12(之人物受伤和死亡的逻辑动画)-CSDN博客 上期我们聊了人物的受伤和死亡的逻辑和动画,我们主要学习了事件的执行,即我们在人物受伤时可能会触发很多的事件,比如触发人物受伤的动画以及播放音乐等…...

DAY04 HTMLCSS

文章目录 一 表单(1) 数字控件(2) 颜色控件(3) 日期控件(4) 月份控件(5) 星期控件(6) 搜索控件(7) 范围控件 二 浮动框架三 结构化标签四 CSS1 CSS概述2 CSS的编写位置1. inline style 行内样式2. inner style 内部样式3. outer style 外部样式4. 小结 3 CSS选择器1. 通用选择器…...

Linux_理解程序地址空间和页表

目录 1、进程地址空间示意图 2、验证进程地址空间的结构 3、验证进程地址空间是虚拟地址 4、页表-虚拟地址与物理地址 5、什么是进程地址空间 6、进程地址空间和页表的存在意义 6.1 原因一(效率性) 6.2 原因二(安全性) …...

NAND闪存市场彻底复苏

在全球内存市场逐渐走出阴霾、迎来复苏曙光之际,日本存储巨头铠侠(Kioxia)凭借敏锐的市场洞察力和及时的战略调整,成功实现了从生产紧缩到全面复苏的华丽转身。这一转变不仅彰显了企业在逆境中的生存智慧,也为全球半导…...

过拟合与正则化

Location Beijing 过拟合 对于一个模型 A A A,解向量空间为 θ \theta θ,误差函数用式1表示 J ( θ ) J a c c [ y θ ( x ) − y ] 2 (1) J(\theta)J_{acc}[y_\theta(x)-y]^2\tag{1} J(θ)Jacc​[yθ​(x)−y]2(1) 首先我们考虑用模型 A A A拟合下…...

VMware挂载NAS存储异常处理

问题概述 由于非法关机或恢复,NFS存储可能会出现以下问题: 数据存储处于挂起状态或无法正常识别。虚拟机的配置文件或虚拟磁盘仍然注册在异常数据存储上。系统误认为有虚拟机在使用该数据存储。 问题对策 下面是详细的排查步骤和解决对策&#xff1a…...

Redis 7.x 系列【4】命令手册

有道无术,术尚可求,有术无道,止于术。 本系列Redis 版本 7.2.5 源码地址:https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 说明2. 命令手册2.1 Generic2.2 数据类型2.2.1 String2.2.2 Hash2.2.3 List2.2.4 S…...

走进Elasticsearch

什么是ES 是一个分布式、RESTful风格的搜索和数据分析引擎 中文参考文档: 《Elasticsearch中文文档》 | Elasticsearch 技术论坛 elasticSearch官网: Functions and Operators | Elasticsearch Guide [7.11] | Elastic查询方式 Kibana查询(原…...

QT TCP服务器和客户端示例程序

下面是一个简单的 Qt TCP 服务器和客户端示例&#xff0c;演示了如何使用 vSetDriver、vSetListener 和 vTcpServerStart 函数。假设 vSetDriver 和 vSetListener 是你定义的自定义函数。 TCP 服务器部分 tcpserver.h #ifndef TCPSERVER_H #define TCPSERVER_H#include <QT…...

Xlua三方库Android编译出错解决办法

Xlua三方库Android编译出错解决办法 最近听老师的热更教程&#xff0c;讲到xlua编译android平台会报错&#xff0c;也是看了老师的博客&#xff0c;按照方法去解决&#xff0c;然而问题并没有解决。应该是因为代码更新或者版本不一样&#xff0c;在此简单记录一下解决过程。 参…...

美国犹他州立大学《Nature Geoscience》(IF=18)!揭示草本植物对土壤有机碳的重要贡献!

随着全球变暖的影响越来越显著&#xff0c;碳固定成为了一个备受关注的话题。在这个背景下&#xff0c;热带草原被认为是一个潜在的碳固定区域。然而&#xff0c;目前的研究主要关注于在热带草原中种植树木&#xff0c;以期望增加土壤有机碳含量。但是&#xff0c;热带草原中的…...

高考专业抉择计算机专业热度不减,兴趣、实力与挑战并存。

作为一名即将步入大学校门的高考生&#xff0c;我对于计算机相关专业是否仍是热门选择感到困惑。在过去几年里&#xff0c;计算机科学与技术、人工智能、网络安全、软件工程等专业一直备受追捧&#xff0c;吸引了无数学生。然而&#xff0c;随着市场竞争加剧和市场饱和度提高&a…...

Flask-RQ

Flask-RQ库教程 Flask-RQ 是一个用于在 Flask 应用中集成 RQ&#xff08;Redis Queue&#xff09;的扩展。RQ 是一个简单的 Python 库&#xff0c;用于将任务排入 Redis 队列并异步执行这些任务。这对于处理长时间运行的任务&#xff08;如发送电子邮件、生成报告等&#xff0…...

LeetCode 58. 最后一个单词的长度

LeetCode 58. 最后一个单词的长度 你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组成、不包含任何空格字符的最大子字符串 示例 1&#xff1a; 输入&#xff1a;s “Hello World”…...

3阶段提交协议(3pc)

3阶段提交协议&#xff08;3pc&#xff09; 1 简介 三阶段提交协议是一个强一致、中心化的原子提交协议。解决了分布式事务、副本容错等分布式问题。其核心思想是将2PC的二阶段提交协议的“准备阶段”一分为二&#xff0c;形成了由CanCommit、PreCommit、DoCommit三个阶段组成…...

802.11中的各种帧

在无线网络中&#xff0c;802.11协议定义了三种类型的帧&#xff1a;管理帧&#xff08;Management Frames&#xff09;、控制帧&#xff08;Control Frames&#xff09;和数据帧&#xff08;Data Frames&#xff09;。每种类型的帧都有其特定的功能&#xff0c;帮助维护和管理…...

SAP PP学习笔记21 - 计划策略的Customize:策略组 > 策略 > 需求类型 > 需求类(消费区分,计划区分)

上面几章讲了MTS&#xff0c;MTO&#xff0c;ATO的计划策略。 本章来讲一下它的后台 Customize。 1&#xff0c;Customizeing&#xff1a;Planned Indep.Reqmts Management 这是配置计划策略的整个过程&#xff1a; - Requirements Type / Class 需求类型 / 需求类 - Plann…...

axure9设置组件自适应浏览器大小

问题&#xff1a;预览时不展示下方的滚动条 方法一&#xff1a;转化为动态面板 1.在页面上创建一个矩形 2.右键-转化为动态面板 3.双击进入动态面板设置 4.设置动态面板矩形的颜色 5.删除原来的矩形 6.关闭动态面板&#xff0c;点击预览 7.此时可以发现底部没有滚动条了 方法…...

示例:WPF中TreeView自定义TreeNode泛型绑定对象来实现级联勾选

一、目的&#xff1a;在绑定TreeView的功能中经常会遇到需要在树节点前增加勾选CheckBox框&#xff0c;勾选本节点的同时也要同步显示父节点和子节点状态 二、实现 三、环境 VS2022 四、示例 定义如下节点类 public partial class TreeNodeBase<T> : SelectBindable<…...

C++ explicit关键字的用法

在C中&#xff0c;explicit关键字用于构造函数和转换运算符&#xff0c;以防止隐式转换。它可以帮助我们避免意外的类型转换&#xff0c;从而提高代码的安全性和可读性。explicit关键字只能用于单参数构造函数和转换运算符。 使用explicit的场景 单参数构造函数&#xff1a; 当…...

51.Python-web框架-Django开始第一个应用的增删改查

目录 1.概述 2.创建应用 创建app01 在settings.py里引用app01 3.定义模型 在app01\models.py里创建模型 数据库迁移 4.创建视图 引用头 部门列表视图 部门添加视图 部门编辑视图 部门删除视图 5.创建Template 在app01下创建目录templates 部门列表模板depart.ht…...

Redis之线程IO模型

引言 Redis是个单线程程序&#xff01;这点必须铭记。除了Redis之外&#xff0c;Node.js也是单线程&#xff0c;Nginx也是单线程&#xff0c;但是他们都是服务器高性能的典范。 Redis单线程为什么能够这么快&#xff01; 因为他所有的数据都在内存中&#xff0c;所有的运算都…...

针对微电网中可时移,柔性,基础负荷的电价响应模型---代码解析

前言&#xff1a; 在上两篇帖子中&#xff0c;讲解了我对于粒子群算法的理解&#xff0c;站在巨人的肩膀上去回望&#xff1a;科研前辈们确实非常牛逼&#xff0c;所以它才成为了非常经典的算法。这篇帖子主要是想分享一下&#xff0c;对于微电网、电力系统的论文中&#xff0c…...

网站标题的重要性/网站优化方案

一、Java平台体系及应用场景从1995年Sun Microsystems公司正式推出Java&#xff0c;到2006年时Sun公司将其开源&#xff0c;迄今为止已经有了20年的历史。Java本身已不仅仅只是一门面向对象的编程语言&#xff0c;而是由一系列计算机软件和规范形成的技术体系&#xff0c;这个技…...

开服网站建设/厦门seo计费

题目&#xff1a; 给定 n 个非负整数 a1&#xff0c;a2&#xff0c;...&#xff0c;an&#xff0c;每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线&#xff0c;垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线&#xff0c;使得它们与 x 轴共同构成…...

营销型网站建设实战感想/公司广告推广

前几天吐槽了一本口水太多的推荐系统书籍《Practical Recommender Systems实用推荐系统》&#xff0c;最近读到了这本《机器学习范式在推荐系统中的应用》&#xff08;英文名《Machine Learning Paradigms- Applications in Recommender Systems》&#xff09;。只有一百三十来…...

vr模式的网站建设公司/上海关键词排名优化怎样

本文章是❤️力扣 (LeetCode)❤️的内容&#xff0c;该专栏还有多篇优质内容在等待你观看&#xff0c;现在点击右上角点击这个————&#x1f680;订阅专栏&#x1f680; &#x1f506;坚持刷算法 &#x1f48e;每天进步一点点 &#x1f680;冲冲冲冲冲冲冲冲冲冲 &#x1f4…...

找装修工人的平台或app/seo网络培训

C语言/C产生随机数&#xff1a;要用到的函数是rand(), srand()和time() 需要说明的是&#xff0c;iostream头文件中就有srand函数的定义&#xff0c;不需要再额外引入stdlib.h;而使用time()函数需要引入ctime头文件。 使用rand()函数获取一个随机数 如果你只要产生随机数而不需…...

北京住房和经济建设发展委员会网站/厦门网站建设平台

Spring-Boot 1.x版本 传送门&#xff1a;https://gitee.com/didispace/SpringBoot-Learning/tree/master/1.x 快速入门 提示&#xff1a;我们在学习Spring Boot、Spring Cloud的时候&#xff0c;一定要知道它们的版本关系&#xff0c;以避免不必要的困恼。 Spring Cloud Alib…...