当前位置: 首页 > news >正文

【抽代复习笔记】19-群(十三):奇偶置换、循环置换的几个定理及例题

定义:

①在Sn中,能够表示为奇数多个对换乘积的置换称为“奇置换”,能够表示为偶数多个对换乘积的置换称为“偶置换”;

②所有偶置换的集合记为An。

 

例1:(1)计算S1和S2中奇、偶置换的数目;

(2)计算S3中奇偶置换的数目。

解:(1)S2 = {(1),(12)},其中(12)是奇置换,(1) = (12)(12)是偶置换,所以S2中奇偶置换各自的数目均为1个;

(2)S3 = {(1),(12),(13),(23),(123),(132)},其中(12),(13),(23)为奇置换,(1) = (12)(12),(123) = (13)(12),(132) = (12)(13)是偶置换,因此S3中奇偶置换各自的数目均为3个。

 

定理5:n ≥ 2时,Sn中奇、偶置换各占一半,即|An| = n!/2。

证:设|An| = s,|Sn - An| = t,(Sn - An表示Sn中所有奇置换组成的集合)

任取σ∈An,取对换(12)∈Sn,由于σ为偶置换,因此置换 (12)σ 为奇置换,

即 (12)σ∈Sn - An,

从而,根据σ的任意性,可知|An| ≤ |Sn - An|,即s ≤ t;

同理,任取r∈Sn - An,(12)σ ∈ An,

因此有|An| ≥ |Sn - An|,即s ≥ t;

所以有 s = t,也就是说Sn中奇、偶置换的数目相等,彼此各占一半。

 

例2:在S5中,将下列循环的乘积表示为矩阵形式:

(1)(145)(23),(23)(145);

(2)(13)(25),(25)(13)。

解:按从右到左计算:

(1)①先是2和3对换,然后1变4、4变5、5变1,因此表示成矩阵形式如下:

c89b9324f1654557ae071245af4bc7dc.png

②先是1变4、4变5、5变1,然后是2和3对换,因此表示成矩阵形式如下:

7ed848a5bb4a41d79c9caa21df9814b8.png

(2)①先是2和5对换,然后1和3对换,因此表示成矩阵形式如下:

85fdc70bf21545258cf2deca4674ba02.png

②先是1和3对换,然后2和5对换,因此表示成矩阵形式如下:

7296dcc4df074bfbb161a607d4584e64.png

 

定理6:两个不相交的循环置换的乘积可交换。

 

例3:求

8e8988bde58246ba882c527f2f408e5f.png

的逆元。

解:σ5 = (1245),则由:

59d9d9c061614e4f81b90bd6f9ae0206.png

可求出σ5的逆元,因为(1245)(1542) = (1),因此σ5的逆元为(1542) = (5421),即:

56c7e002ebf84b64a362274f316c5641.png

 

定理7:k-循环的逆元等于反序写出的循环,即

a1871f948b69416da4b89d9733d1eb1d.png

 

例4:在S6中,计算下列置换的阶:

(1)(235);

(2)(1254);

(3)(13)(256);

(4)(13)(24)。

解:(1)(235)^2 = (235)(235) = (253),(235)^3 = (235)(235)(235) = (253)(235) = (1),所以|(235)| = 3;

(2)(1254)^2 = (1254)(1254) = (15)(24),(1254)^3 = (1254)(1254)(1254) = (15)(24)(1254) = (1452),(1254)^4 = (1254)(1254)(1254)(1254) = (1452)(1254) = (1),所以|(1254)| = 4;

(3)|(13)(256)| = |(13)|×|(256)| = 2×3 = 6;

(4)[(13)(24)]^2 = (13)(24)(13)(24) = (1),所以|(13)(24)| = 2。

 

定理8:

(1)k-循环的阶等于k;

(2)如果一个置换σ可以表示为一个k-循环和一个l-循环的乘积,那么|σ|等于k,l的最小公倍数。

 

(待续……) 

 

相关文章:

【抽代复习笔记】19-群(十三):奇偶置换、循环置换的几个定理及例题

定义: ①在Sn中,能够表示为奇数多个对换乘积的置换称为“奇置换”,能够表示为偶数多个对换乘积的置换称为“偶置换”; ②所有偶置换的集合记为An。 例1:(1)计算S1和S2中奇、偶置换的数目&…...

RT-Thread简介及启动流程分析

阅读引言: 最近在学习RT-Thread的内部机制,觉得这个启动流程和一些底层原理还是挺重要的, 所以写下此文。 目录 1, RT-Thread简介 2,RT-Thread任务的几种状态 3, 学习资源推荐 4, 启动流程分…...

MCU嵌入式AI开发笔记-视频笔记同步更新

MCU嵌入式AI开发笔记 抖音B站等站点笔记视频同步更新 01嵌入式AI大的方向 STM32跑神经网络 http://news.eeworld.com.cn/mp/EEWorld/a134877.jspx 为什么可以在STM32上面跑神经网络?简而言之就是使用STM32CubeMX中的X-Cube-AI扩展包将当前比较热门的AI框架进行C代码的转化,…...

DoIP——step2:车辆发现

文章目录 前言一、IP地址配置1.1 AutoIP1.2 DHCP1.3 DoIP实体的IP地址配置流程二、车辆发现车辆声明报文内容如下:前言 完成诊断设备到车辆的物理连接并通过激活线使能诊断连接后边缘节点将会将连接状态传递至应用层,在开始车辆发现过程之前,需要先进行各自的IP地址配置,获…...

【动态规划】0-1背包问题

【动态规划】0-1背包问题 题目:现在有四个物品,背包总容量为8,背包最多能装入价值为多少的物品? 我的图解 表格a【i】【j】表示的是容量为j的背包装入前i个物品的最大价值。 拿a【1】【1】来说,它的值就是背包容量为1,只考虑…...

WordPress 高级缓存插件 W3 Total Cache Pro 详细配置教程

说起来有关 WordPress 缓存插件明月已经发表过不少文章了,但有关 W3 Total Cache Pro 这个 WordPress 高级缓存插件除了早期【网站缓存插件 W3 Total Cache,适合自己的才是最好的!】一文后就很少再提及了,最近因为明月另一个网站【玉满斋】因为某些性能上的需要准备更换缓存…...

每日一题——Python实现PAT乙级1012 数字分类(举一反三+思想解读+逐步优化)五千字好文

一个认为一切根源都是“自己不够强”的INTJ 个人主页:用哲学编程-CSDN博客专栏:每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 我的写法 代码优点 代码缺点 时间复杂度 空间复杂度 代码改进建议 我要更强 哲…...

Unity2D游戏制作入门 | 13 ( 之人物三段攻击 )

上期链接:Unity2D游戏制作入门 | 12(之人物受伤和死亡的逻辑动画)-CSDN博客 上期我们聊了人物的受伤和死亡的逻辑和动画,我们主要学习了事件的执行,即我们在人物受伤时可能会触发很多的事件,比如触发人物受伤的动画以及播放音乐等…...

DAY04 HTMLCSS

文章目录 一 表单(1) 数字控件(2) 颜色控件(3) 日期控件(4) 月份控件(5) 星期控件(6) 搜索控件(7) 范围控件 二 浮动框架三 结构化标签四 CSS1 CSS概述2 CSS的编写位置1. inline style 行内样式2. inner style 内部样式3. outer style 外部样式4. 小结 3 CSS选择器1. 通用选择器…...

Linux_理解程序地址空间和页表

目录 1、进程地址空间示意图 2、验证进程地址空间的结构 3、验证进程地址空间是虚拟地址 4、页表-虚拟地址与物理地址 5、什么是进程地址空间 6、进程地址空间和页表的存在意义 6.1 原因一(效率性) 6.2 原因二(安全性) …...

NAND闪存市场彻底复苏

在全球内存市场逐渐走出阴霾、迎来复苏曙光之际,日本存储巨头铠侠(Kioxia)凭借敏锐的市场洞察力和及时的战略调整,成功实现了从生产紧缩到全面复苏的华丽转身。这一转变不仅彰显了企业在逆境中的生存智慧,也为全球半导…...

过拟合与正则化

Location Beijing 过拟合 对于一个模型 A A A,解向量空间为 θ \theta θ,误差函数用式1表示 J ( θ ) J a c c [ y θ ( x ) − y ] 2 (1) J(\theta)J_{acc}[y_\theta(x)-y]^2\tag{1} J(θ)Jacc​[yθ​(x)−y]2(1) 首先我们考虑用模型 A A A拟合下…...

VMware挂载NAS存储异常处理

问题概述 由于非法关机或恢复,NFS存储可能会出现以下问题: 数据存储处于挂起状态或无法正常识别。虚拟机的配置文件或虚拟磁盘仍然注册在异常数据存储上。系统误认为有虚拟机在使用该数据存储。 问题对策 下面是详细的排查步骤和解决对策&#xff1a…...

Redis 7.x 系列【4】命令手册

有道无术,术尚可求,有术无道,止于术。 本系列Redis 版本 7.2.5 源码地址:https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 说明2. 命令手册2.1 Generic2.2 数据类型2.2.1 String2.2.2 Hash2.2.3 List2.2.4 S…...

走进Elasticsearch

什么是ES 是一个分布式、RESTful风格的搜索和数据分析引擎 中文参考文档: 《Elasticsearch中文文档》 | Elasticsearch 技术论坛 elasticSearch官网: Functions and Operators | Elasticsearch Guide [7.11] | Elastic查询方式 Kibana查询(原…...

QT TCP服务器和客户端示例程序

下面是一个简单的 Qt TCP 服务器和客户端示例&#xff0c;演示了如何使用 vSetDriver、vSetListener 和 vTcpServerStart 函数。假设 vSetDriver 和 vSetListener 是你定义的自定义函数。 TCP 服务器部分 tcpserver.h #ifndef TCPSERVER_H #define TCPSERVER_H#include <QT…...

Xlua三方库Android编译出错解决办法

Xlua三方库Android编译出错解决办法 最近听老师的热更教程&#xff0c;讲到xlua编译android平台会报错&#xff0c;也是看了老师的博客&#xff0c;按照方法去解决&#xff0c;然而问题并没有解决。应该是因为代码更新或者版本不一样&#xff0c;在此简单记录一下解决过程。 参…...

美国犹他州立大学《Nature Geoscience》(IF=18)!揭示草本植物对土壤有机碳的重要贡献!

随着全球变暖的影响越来越显著&#xff0c;碳固定成为了一个备受关注的话题。在这个背景下&#xff0c;热带草原被认为是一个潜在的碳固定区域。然而&#xff0c;目前的研究主要关注于在热带草原中种植树木&#xff0c;以期望增加土壤有机碳含量。但是&#xff0c;热带草原中的…...

高考专业抉择计算机专业热度不减,兴趣、实力与挑战并存。

作为一名即将步入大学校门的高考生&#xff0c;我对于计算机相关专业是否仍是热门选择感到困惑。在过去几年里&#xff0c;计算机科学与技术、人工智能、网络安全、软件工程等专业一直备受追捧&#xff0c;吸引了无数学生。然而&#xff0c;随着市场竞争加剧和市场饱和度提高&a…...

Flask-RQ

Flask-RQ库教程 Flask-RQ 是一个用于在 Flask 应用中集成 RQ&#xff08;Redis Queue&#xff09;的扩展。RQ 是一个简单的 Python 库&#xff0c;用于将任务排入 Redis 队列并异步执行这些任务。这对于处理长时间运行的任务&#xff08;如发送电子邮件、生成报告等&#xff0…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...