gcn+tcn+transformer入侵检测
gcn
gcn_out = self.gcn(A_hat, D_hat, X) 的公式实际上是图卷积网络(GCN)层的核心操作。具体来说,这一步的计算基于图卷积的基本公式:
H ( l + 1 ) = σ ( D ^ − 1 / 2 A ^ D ^ − 1 / 2 H ( l ) W ( l ) ) H^{(l+1)} = \sigma\left( \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} H^{(l)} W^{(l)} \right) H(l+1)=σ(D^−1/2A^D^−1/2H(l)W(l))
在这个公式中:
- H ( l ) H^{(l)} H(l) 是第 l l l 层的节点特征矩阵, H ( 0 ) = X H^{(0)} = X H(0)=X 即输入的节点特征矩阵。
- A ^ \hat{A} A^ 是加入自环后的图的邻接矩阵。
- D ^ \hat{D} D^ 是 A ^ \hat{A} A^ 的度矩阵。
- W ( l ) W^{(l)} W(l) 是第 l l l 层的权重矩阵。
- σ \sigma σ 是激活函数(例如ReLU)。
GCN的公式推导
我们可以具体推导出计算步骤:
-
邻接矩阵和度矩阵:假设图的邻接矩阵为 A A A,我们首先加入自环得到 A ^ = A + I \hat{A} = A + I A^=A+I,其中 I I I 是单位矩阵。然后计算 A ^ \hat{A} A^ 的度矩阵 D ^ \hat{D} D^,其对角线元素为 D ^ i i = ∑ j A ^ i j \hat{D}_{ii} = \sum_j \hat{A}_{ij} D^ii=∑jA^ij。
-
归一化的邻接矩阵:接下来计算 D ^ − 1 / 2 A ^ D ^ − 1 / 2 \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} D^−1/2A^D^−1/2,用于对邻接矩阵进行归一化,使得卷积操作不会改变特征的尺度。
-
图卷积操作:最后,将归一化后的邻接矩阵与输入特征矩阵相乘,再与权重矩阵 W W W 相乘,并通过激活函数 σ \sigma σ 得到输出特征矩阵 H ( l + 1 ) H^{(l+1)} H(l+1)。
tcn
在Temporal Convolutional Network(TCN)中,关键操作包括卷积操作、激活函数、丢弃和跳跃连接。以下是TCN中TemporalBlock的推理公式:
- 卷积操作:使用扩展卷积对输入进行时间卷积。
y ( 1 ) = ReLU ( Dropout ( Chomp ( Conv1d ( x , W 1 ) ) ) ) y^{(1)} = \text{ReLU}(\text{Dropout}(\text{Chomp}(\text{Conv1d}(x, W_1)))) y(1)=ReLU(Dropout(Chomp(Conv1d(x,W1))))
- 第二次卷积操作:再次使用扩展卷积,并应用相同的操作。
y ( 2 ) = ReLU ( Dropout ( Chomp ( Conv1d ( y ( 1 ) , W 2 ) ) ) ) y^{(2)} = \text{ReLU}(\text{Dropout}(\text{Chomp}(\text{Conv1d}(y^{(1)}, W_2)))) y(2)=ReLU(Dropout(Chomp(Conv1d(y(1),W2))))
- 跳跃连接:如果输入和输出的维度不同,则使用 1 × 1 1 \times 1 1×1 卷积对输入进行下采样。
res = { x , if n inputs = n outputs Conv1d ( x , W downsample ) , otherwise \text{res} = \begin{cases} x, & \text{if } n_{\text{inputs}} = n_{\text{outputs}} \\ \text{Conv1d}(x, W_{\text{downsample}}), & \text{otherwise} \end{cases} res={x,Conv1d(x,Wdownsample),if ninputs=noutputsotherwise
- 输出计算:将卷积操作后的输出与跳跃连接的结果相加,并通过ReLU激活函数。
output = ReLU ( y ( 2 ) + res ) \text{output} = \text{ReLU}(y^{(2)} + \text{res}) output=ReLU(y(2)+res)
总结起来,TemporalBlock的推理公式如下:
output = ReLU ( Conv1d ( ReLU ( Dropout ( Chomp ( Conv1d ( x , W 1 ) ) ) ) , W 2 ) + res ) \text{output} = \text{ReLU}(\text{Conv1d}(\text{ReLU}(\text{Dropout}(\text{Chomp}(\text{Conv1d}(x, W_1)))), W_2) + \text{res}) output=ReLU(Conv1d(ReLU(Dropout(Chomp(Conv1d(x,W1)))),W2)+res)
其中:
- Conv1d ( x , W ) \text{Conv1d}(x, W) Conv1d(x,W) 表示对输入 x x x 进行卷积操作,卷积核权重为 W W W。
- Chomp \text{Chomp} Chomp 用于去除卷积后多余的填充部分。
- Dropout \text{Dropout} Dropout 是丢弃层,用于防止过拟合。
- ReLU \text{ReLU} ReLU 是激活函数。
- res \text{res} res 是跳跃连接的结果。
transformer
在TransformerBlock中,关键操作包括多头自注意力机制、前馈神经网络层、层归一化和跳跃连接。以下是TransformerBlock的推理公式:
- 多头自注意力机制:
Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right) V Attention(Q,K,V)=softmax(dkQKT)V
其中, Q = K = V = x Q = K = V = x Q=K=V=x, d k d_k dk 是键的维度。多头自注意力输出为:
attn_output = MultiHeadAttention ( x , x , x ) \text{attn\_output} = \text{MultiHeadAttention}(x, x, x) attn_output=MultiHeadAttention(x,x,x)
- 第一跳跃连接和层归一化:
x 1 = LayerNorm ( x + Dropout ( attn_output ) ) x_1 = \text{LayerNorm}(x + \text{Dropout}(\text{attn\_output})) x1=LayerNorm(x+Dropout(attn_output))
- 前馈神经网络层:
ff_output = Linear 2 ( Dropout ( ReLU ( Linear 1 ( x 1 ) ) ) ) \text{ff\_output} = \text{Linear}_2(\text{Dropout}(\text{ReLU}(\text{Linear}_1(x_1)))) ff_output=Linear2(Dropout(ReLU(Linear1(x1))))
- 第二跳跃连接和层归一化:
output = LayerNorm ( x 1 + Dropout ( ff_output ) ) \text{output} = \text{LayerNorm}(x_1 + \text{Dropout}(\text{ff\_output})) output=LayerNorm(x1+Dropout(ff_output))
总结起来,TransformerBlock的推理公式如下:
- 多头自注意力机制:
attn_output = MultiHeadAttention ( x , x , x ) \text{attn\_output} = \text{MultiHeadAttention}(x, x, x) attn_output=MultiHeadAttention(x,x,x)
- 第一跳跃连接和层归一化:
x 1 = LayerNorm ( x + Dropout ( attn_output ) ) x_1 = \text{LayerNorm}(x + \text{Dropout}(\text{attn\_output})) x1=LayerNorm(x+Dropout(attn_output))
- 前馈神经网络层:
ff_output = Linear 2 ( Dropout ( ReLU ( Linear 1 ( x 1 ) ) ) ) \text{ff\_output} = \text{Linear}_2(\text{Dropout}(\text{ReLU}(\text{Linear}_1(x_1)))) ff_output=Linear2(Dropout(ReLU(Linear1(x1))))
- 第二跳跃连接和层归一化:
output = LayerNorm ( x 1 + Dropout ( ff_output ) ) \text{output} = \text{LayerNorm}(x_1 + \text{Dropout}(\text{ff\_output})) output=LayerNorm(x1+Dropout(ff_output))
相关文章:
gcn+tcn+transformer入侵检测
gcn gcn_out self.gcn(A_hat, D_hat, X) 的公式实际上是图卷积网络(GCN)层的核心操作。具体来说,这一步的计算基于图卷积的基本公式: H ( l 1 ) σ ( D ^ − 1 / 2 A ^ D ^ − 1 / 2 H ( l ) W ( l ) ) H^{(l1)} \sigma\left…...
【Python】 了解二分类:机器学习中的基础任务
我已经从你的 全世界路过 像一颗流星 划过命运 的天空 很多话忍住了 不能说出口 珍藏在 我的心中 只留下一些回忆 🎵 牛奶咖啡《从你的全世界路过》 在机器学习和数据科学领域,分类问题是最常见的任务之一。分类问题可以分为多类分…...
搭建PHP开发环境:Linux篇
目录 一、引言 二、环境准备 三、安装Web服务器(Apache) Ubuntu/Debian系统: CentOS/Red Hat系统: 四、安装PHP解释器 Ubuntu/Debian系统: CentOS/Red Hat系统: 五、配置Apache以支持PHP Ubuntu/…...
ROS 自动驾驶多点巡航
ROS 自动驾驶多点巡航: 1、首先创建工作空间: 基于我们的artca_ws; 2、创建功能包: 进入src目录,输入命令: catkin_create_pkg point_pkg std_msgs rospy roscpptest_pkg 为功能包名,后面两个是依赖&a…...
SQL学习,大厂面试真题(1):观看各个视频的平均完播率
各个视频的平均完播率 1、视频信息表 IDAuthorNameCategoryAgeStart Time1张三影视302024-01-01 7:00:002李四美食602024-01-01 7:00:003王麻子旅游902024-01-01 7:00:00 (video_id-视频ID, AuthorName-创作者, tag-类别标签, duration-视频时长(秒&…...
2023年全国大学生数学建模竞赛C题蔬菜类商品的自动定价与补货决策(含word论文和源代码资源)
文章目录 一、题目二、word版实验报告和源代码(两种获取方式) 一、题目 2023高教社杯全国大学生数学建模竞赛题目 C题 蔬菜类商品的自动定价与补货决策 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而…...
inpaint下载安装2024-inpaint软件安装包下载v5.0.6官网最新版附加详细安装步骤
Inpaint软件最新版是一款功能强大的图片去水印软件,这款软件拥有强大的智能算法,能够根据照片的背景为用户去除照片中的各种水印,并修补好去除水印后的图片。并且软件操作简单、界面清爽,即使是修图新手也能够轻松上手,…...
分享三个仓库
Hello , 我是恒。大概有半个月没有发文章了,都写在文档里了 今天分享三个我开源的项目,比较小巧但是有用 主页 文档导航 Github地址: https://github.com/lmliheng/document 在线访问:http://document.liheng.work/ 里面有各种作者书写的文档ÿ…...
MacOS - 启动台多了个『卸载 Adobe Photoshop』
问题描述 今天安装好了 Adobe Ps,但是发现启动台多了个『卸载 Adobe Photoshop』强迫症又犯了,想把它干掉! 解决方案 打开访达 - 前往 - 资源库,搜索要卸载的名字就可以看到,然后移除到垃圾筐...
PHP 日期处理完全指南
PHP 日期处理完全指南 引言 在PHP开发中,日期和时间处理是一个常见且重要的任务。PHP提供了丰富的内置函数来处理日期和时间,包括日期的格式化、计算、解析等。本文将详细介绍PHP中日期处理的相关知识,帮助读者全面理解和掌握这一技能。 1. PHP日期函数基础 1.1 date()函…...
KVB:怎么样选择最优交易周期?
摘要 在金融交易中,周期的选择是影响交易成败的重要因素之一。不同的交易周期对应不同的市场环境和交易策略,选择合适的周期可以提高交易的成功率。本文将详细探讨交易中如何选择最优周期,包括短周期、中周期和长周期的特点及适用情况&#…...
前端面试题日常练-day69 【面试题】
题目 希望这些选择题能够帮助您进行前端面试的准备,答案在文末 TypeScript中,以下哪个关键字用于声明一个变量的类型为联合类型? a) union b) any c) all d) | 在TypeScript中,以下哪个符号用于声明一个变量的类型为对象类型&am…...
Java 解析xml文件-工具类
Java 解析xml文件-工具类 简述 Java解析xml文件,对应的Javabean是根据xml中的节点来创建,如SeexmlZbomord、SeexmlIdoc等等 工具类代码 import cn.hutool.core.io.FileUtil; import com.alibaba.cloud.commons.io.IOUtils; import com.seexml.bom.Se…...
PyQt5学习系列之新项目创建并使用widget
PyQt5学习系列之新项目创建并使用widget 前言报错新建项目程序完整程序总结 前言 新建项目,再使用ui转py,无论怎么样都打不开py文件,直接报错。 报错 Connected to pydev debugger (build 233.11799.298)新建项目程序 # Press ShiftF10 to…...
mtk8675 安卓端assert函数的坑
8675 安卓端, assert(pthread_mutex_init(&mutex_data_, &mattr) 0);用这行代码发现pthread_mutex_init函数没有被调用,反汇编发现不光没调用assert,pthread_mutex_init也没调用。直接pthread_mutex_init(&mutex_data_, &ma…...
编程入门笔记:从基础到进阶的探索之旅
编程入门笔记:从基础到进阶的探索之旅 编程,作为现代科技的基石,正日益渗透到我们生活的方方面面。对于初学者来说,掌握编程技能不仅有助于提升解决问题的能力,还能开启通往创新世界的大门。本篇文章将从四个方面、五…...
小规模自建 Elasticsearch 的部署及优化
本文将详细介绍如何在 CentOS 7 操作系统上部署并优化 Elasticsearch 5.3.0,以承载千万级后端服务的数据采集。要使用Elasticsearch至少需要三台独立的服务器,本文所用服务器配置为4核8G的ECS云服务器,其中一台作为 master + data 节点、一台作为 client + data 节点、最后一…...
MySQL 示例数据库大全
前言: 我们练习 SQL 时,总会自己创造一些测试数据或者网上找些案例来学习,其实 MySQL 官方提供了好几个示例数据库,在 MySQL 的学习、开发和实践中具有非常重要的作用,能够帮助初学者更好地理解和应用 MySQL 的各种功…...
VirtualBox、Centos7下安装docker后pull镜像问题、ftp上传文件问题
Docker安装篇(CentOS7安装)_docker 安装 centos7-CSDN博客 首先,安装docker可以根据这篇文章进行安装,安装完之后,我们就需要去通过docker拉取相关的服务镜像,然后安装相应的服务容器,比如我们通过docker来安装mysql,…...
链表 题目汇总
237. 删除链表中的节点...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
