多目标跟踪中检测器和跟踪器如何协同工作的
多目标跟踪中检测器和跟踪器如何协同工作的
flyfish
主要是两者 接口间的交互
假设
原始图像尺寸:1920(宽)x 1080(高)
模型输入尺寸:640(宽)x 640(高)
检测器处理流程
-
读取原始图像 :
检测器首先读取一张原始图像,大小是1920x1080。 -
预处理 :
检测器将原始图像调整大小,使其适合模型的输入尺寸640x640。
为了保持图像的比例不变,检测器会根据原始图像的宽高比进行缩放。比如,缩放后的图像可能是640x360。如果图像在某个维度没有达到640,检测器会用灰色或其他颜色填充剩余部分,形成640x640的输入图像。
预处理还包括归一化操作,将图像像素值从0-255缩放到0-1之间,并减去均值、除以标准差等操作。 -
模型推理 :
将预处理后的图像输入到检测模型中,模型会输出检测结果,这些结果包括每个检测到的目标的边界框(bbox)和置信度分数。 -
后处理 :
检测器将模型输出的边界框还原到原始图像的尺寸。比如,如果一个目标在640x640的图像中占据了某个位置,检测器会将这个位置转换回1920x1080的尺寸。
后处理还包括过滤掉置信度较低的检测结果,确保只保留较为准确的检测结果。
检测器输出
-
dets:包含检测到的目标的边界框和置信度分数。 -
img_info:包含原始图像的信息,比如高度、宽度和缩放比例。
跟踪器处理流程
- 初始化跟踪器 :
在整个视频或序列的处理过程中,只需要初始化一次跟踪器。初始化包括设置以下内容
track_thresh:跟踪的阈值。track_buffer:跟踪缓冲区大小。match_thresh:匹配阈值。
- 更新跟踪器 :
每处理一帧图像时,跟踪器都会接收检测器的输出结果dets和img_info。
检测器的输出结果包括边界框(目标在图像中的位置)和置信度分数。
跟踪器输出
返回的是多目标跟踪表示 online_targets:包含当前帧中所有跟踪目标的信息,包括:
- 边界框 :目标的当前位置。
- 置信度 :目标的置信度分数。
- 身份标识 :目标的唯一标识符。
- 跟踪状态 :目标是否被激活、丢失或移除。
- 类别标签 :目标的类别标签。
因为返回的是 单目标跟踪表示的list,所以该对象存储了有关单个轨迹的所有信息,并基于卡尔曼滤波执行状态更新和预测。
还会包括其他信息,根据需要再定是否使用
kalman_filter :用于此特定目标跟踪的卡尔曼滤波器实例。
mean :状态估计的均值向量。
covariance : 状态估计的协方差矩阵。
tracklet_len :轨迹的长度。
frame_id : 当前帧ID。
start_frame :对象首次检测到的帧。
多个单目标跟踪表示,就是多目标跟踪表示。
图像缩放
上面的检测器处理流程 预处理其中一部分是letterbox
使用letterbox处理一张原始图像时,目标是将图像缩放到指定的模型输入大小(640x640)并保持原始图像的宽高比,同时在图像的两侧或上下方添加填充(padding)以达到目标尺寸。
给定原始图像的尺寸为1920x1080(宽度*高度),我们需要将其缩放并添加填充以适应640x640的输入尺寸。
- 计算缩放比例 :需要将原始图像的尺寸调整到适合640x640的输入尺寸,保持宽高比。
宽高比为1920 / 1080 ≈ 1.78。
输入尺寸640x640的宽高比为1。
由于1920x1080的宽高比大于1,而640x640的宽高比为1,我们需要考虑缩放的限制。
-
计算缩放后的尺寸 :
由于输入尺寸为640x640,我们可以将宽度缩放到640,这样高度就需要按照相同比例进行缩放:
缩放比例 = 640 / 1920 ≈ 0.333。
缩放后的高度 = 1080 * 0.333 ≈ 360。
因此,缩放后的图像尺寸为640x360。 -
添加填充(padding) :
缩放后的图像尺寸为640x360,目标尺寸为640x640。
需要在图像的顶部和底部添加填充来达到目标尺寸:
填充的总高度 = 640 - 360 = 280。
由于填充需要对称地添加在图像的顶部和底部,每边添加的填充为280 / 2 = 140。
因此,原始图像1920x1080经过letterbox处理后,最终的图像尺寸为640x640,其中有效内容为640x360,顶部和底部各有140像素的填充。
相关文章:
多目标跟踪中检测器和跟踪器如何协同工作的
多目标跟踪中检测器和跟踪器如何协同工作的 flyfish 主要是两者 接口间的交互 假设 原始图像尺寸:1920(宽)x 1080(高) 模型输入尺寸:640(宽)x 640(高) 检…...
kali系统几个开机启动项的区别
1、Live system (amd64) 简单的模式 ,启动系统,直接进入 Kali,在系统中的所有的操作和设置都会在下次重启时失效。 Kali 中保存/编辑的所有东西都会重启丢失。 2、Live system (amd64 fail-safe mode) 这种模式与 Live (amd64) 类似…...
【自撰写】【国际象棋入门】第5课 常见开局战术组合(一)
第5课 常见开局战术组合(一) 本次课中,我们简要介绍几种常见的开局战术组合。开局当中,理想的情况是,己方的两只(或以上)轻子相互配合,或者与己方的兵配合,在完成布局的…...
高考志愿填报选专业,女孩就业率最好的专业有哪些?
高考志愿填报选专业, 大家都会关心:将来怎么就业? 按照目前的环境来说,女孩的就业是不乐观的,在职场上,绝大部分岗位都是男性优先的,至少短期内可能还无法改变,这样就要求我们在大学…...
yolov5模型训练早停模型变大
目录 1. 背景2. 原因分析2.1 train代码分析2.2 strip_optimizer函数分析 3. 验证 1. 背景 最近使用tph-yolov5训练yolov5l-tph-plus模型时,发现模型收敛的差不多了,就果断的停止了训练,结果发现last.pt和best.pt竟然488M,而正常训…...
next是什么???
大家都知道最近出了一个很火的框架,Next.js框架。很多大公司(例如:Tencent腾讯,docker,Uber)的项目都在使用这个Next.js框架。那Next.js到底是一个什么框架呢?Next.js有什么优点呢?今…...
K8s的资源对象
资源对象是 K8s 提供的一些管理和运行应用容器的各种对象和组件。 Pod 资源是 K8s 中的基本部署单元,K8s通过Pod来运行业务应用的容器镜像 Job 和 CronJob 资源用于执行任务和定时任务,DaemonSet 资源提供类似每个节点上守护进程, Deployment…...
OpenStack快速入门
任务一 熟悉OpenStack图形界面操作 1.1 Horizon项目 •各OpenStack服务的图形界面都是由Horizon提供的。 •Horizon提供基于Web的模块化用户界面。 •Horizon为云管理员提供一个整体的视图。 •Horizon为终端用户提供一个自主服务的门户。 •Horizon由云管理员进行管理…...
STM32CubeIDE对STM32F072进行ADC配置及使用
目录 1. 配置2. 时钟3. ADC配置4. 代码补充 1. 配置 引脚配置:PB0 2. 时钟 都是48MHz 3. ADC配置 ADC配置: 开启中断: 4. 代码补充 轮训ADC采样: HAL_ADC_PollForConversion(&hadc,10);ADC采样: HAL_ADC_Start (&a…...
Leetcode Hot 100 刷题记录 - Day 1
问题描述: 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 示…...
k8s学习--Kruise Rollouts 基本使用
文章目录 Kruise Rollouts简介什么是 Kruise Rollouts?核心功能 应用环境一、OpenKruise部署1.安装helm客户端工具2. 通过 helm 安装 二、Kruise Rollouts 安装2. kubectl plugin安装 三、Kruise Rollouts 基本使用(多批次发布)1. 使用Deployment部署应用2.准备Roll…...
PHP框架详解 - CakePHP框架
CakePHP 是一个开源的 PHP Web 应用框架,它遵循 MVC(模型-视图-控制器)设计模式。CakePHP 提供了快速开发的功能,如代码自动生成、数据库交互的 CRUD 操作支持、灵活的路由、模板引擎、表单处理以及其它许多有用的特性22。 CakeP…...
el-cascader 支持多层级,多选(可自定义限制数量),保留最后一级
多功能的 el-cascader 序言:最近遇到一个需求关于级联的,有点东西,这里是要获取某个产品类型下的产品,会存在产品类型和产品在同一级的情况,但是产品类型不能勾选; 情况1(二级菜单是产品&…...
leetcode498 对角线遍历
题目 给你一个大小为 m x n 的矩阵 mat ,请以对角线遍历的顺序,用一个数组返回这个矩阵中的所有元素。 示例 输入:mat [[1,2,3],[4,5,6],[7,8,9]] 输出:[1,2,4,7,5,3,6,8,9] 解析 本题目主要考察的就是模拟法,首…...
北京活动会议通常会邀约哪些媒体参会报道?
传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 北京作为我国的首都和文化中心,各类活动会议资源丰富,吸引了众多媒体的关注。以下是一些通常会被邀约参会报道的重要媒体类型: 国家级新闻机构&#x…...
随心笔记,第六更
目录 一、 三步构建 XML转成java bean 1.XML转XSD 2.XSD转JavaBean 3.jaxb 工具类 4.测试 📢📢📢📣📣📣 哈喽!大家好,我是「Leen」。刚工作几年,想和大家一同进步&am…...
zustand 状态管理库的使用 结合TS
zustand 是一个用于React应用的简单、快速且零依赖的状态管理库。它使用简单的钩子(hooks)API来创建全局状态,使得在组件之间共享状态变得容易。 React学习Day10 基本用法 安装:首先,你需要安装zustand库。 npm insta…...
Maven 的生命周期详解
Maven 是目前最流行的项目管理和构建工具之一,广泛应用于 Java 开发项目中。它通过一系列约定和配置,极大地简化了项目的构建、依赖管理和生命周期管理。其中,Maven 的生命周期是其核心概念之一,贯穿了项目从构建、测试、打包到部…...
【稳定检索/投稿优惠】2024年生物技术与食品科学国际会议(ICBFS 2024)
2024 International Conference on Biotechnology and Food Science 2024年生物技术与食品科学国际会议 【会议信息】 会议简称:ICBFS 2024 大会时间:点击查看 截稿时间:点击查看 大会地点:中国厦门 会议官网:www.icb…...
iOS Category
原理: 【iOS】——分类、扩展和关联对象_ios 为什么分类不能加成员变量-CSDN博客 面试题: 1.Category和Extension区别? 在 Objective-C 中,Category 和 Extension 是两种用于向现有类添加新功能的机制,但它们各有特…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
