第九届信也科技杯全球AI算法大赛——语音深度鉴伪识别参赛A榜 0.968961分
遗憾没有进复赛,只是第41名。先贴个A榜的成绩。A榜的前三十名晋级,个个都是99分的大佬,但是B榜的成绩就有点低了,应该是数据不同源的问题,第一名0.78分。官网链接:语音深度鉴伪识别


官方baselin:https://github.com/xinyebei/2024_finvcup_baseline
baseline源码:https://github.com/xieyuankun/Codecfake
实验的 源码:https://github.com/Shybert-AI/Codecfake_ResNet
任务描述:

简单的说一下本次比赛方案的想法,首先明确是语音深度鉴伪识别任务,于是发动互联网的强大的搜索功能,尽可能多的搜索到更多的语音深度鉴伪识别算法。也相应的搜索对应的数据集,在看到此帖子[深度伪造音频普遍检测的Codecfake数据集和对策],同时在github上找到相应的源码,因此方案基于Codecfake进行。通过将网络结构修改成ResNet等实验,提出Codecfake_ResNet模型,让语音鉴别模型的分类指标达到0.968961。(https://blog.csdn.net/robinfang2019/article/details/138673202)
模型架构:
训练步骤:
1.下载finvcup9th_1st_ds5数据集,解压到data目录下
2.执行data_prepare.py 脚本生成训练的csv文件,修改finvcup9th_1st_ds5_valid_data.csv为finvcup9th_1st_ds5_dev_data.csv
python data_prepare.py
3.执行提取特征文件
python preprocess.py
4.训练
python main_train.py --path_to_features preprocess_xls-r-5 -f1 preprocess_xls-r-5 --out_fold ./pretrained_model/codec_w2v2aasist_ResNet50_CSAM_xls-r-5_300m/ --CSAM True --train_task codecfake --num_epochs 50 --batch_size 16 --lr 0.001 --gpu 0 --seed 2024 --num_workers 1
5.预测
python predict.py
实验结果:

通过实验分析提升网络的层数和多模型融合可以提升。
相关文章:
第九届信也科技杯全球AI算法大赛——语音深度鉴伪识别参赛A榜 0.968961分
遗憾没有进复赛,只是第41名。先贴个A榜的成绩。A榜的前三十名晋级,个个都是99分的大佬,但是B榜的成绩就有点低了,应该是数据不同源的问题,第一名0.78分。官网链接:语音深度鉴伪识别 官方baselin:https://g…...
【设计模式(三) 设计模式的分类 】
设计模式(DesignPattern)是一套被反复使用、多数人知晓的、经过分类的、代码设计经验的总结。 使用设计模式的目的 :为了代码可重用性、让代码更容易被他人理解、保证代码可靠性。设计模式使代码编写真正工程化;设计模式是软件工程…...
Linux进程概念(个人笔记)
Linux进程概念 1.冯诺依曼体系结构2.操作系统(先描述,再组织)3.进程3.1查看进程的方式3.2通过系统调用获取进程标识符3.4查看进程中常见字段状态的指令3.3fork创建子进程3.3.1fork的原理 3.4进程状态3.5进程优先级3.5.1Linux内核的调度队列与…...
每天五分钟计算机视觉:如何在现有经典的卷积神经网络上进行微调
本文重点 在深度学习领域,卷积神经网络(Convolutional Neural Networks,CNN)因其强大的特征提取和分类能力而广泛应用于图像识别、自然语言处理等多个领域。然而,从头开始训练一个CNN模型往往需要大量的数据和计算资源,且训练时间较长。幸运的是,迁移学习(Transfer Le…...
10个典型的MySQL笔试题和面试题
提供10个典型的MySQL笔试题和面试题作为示例,并给出答案或解释。如果需要更多题目,可以根据这些示例进行扩展或参考相关文档。 1. MySQL是什么? 答案:MySQL是一个关系型数据库管理系统(RDBMS),…...
AI大模型的TTS评测
L-MTL(Large Multi-Task Learning)Models 是一种大规模多任务学习模型,通过结合 Mixture of Experts(MMoE)框架与 Transformer 模型,实现对 TTS(Text-to-Speech)系统中多个评估指标的…...
推荐一款可以下载B站视频和音频的工具
cobalt是一个免费的下载网站,主要是用于载视频和音频。只要你把相应的网址复制下来,然后打开cobalt网站,黏贴网址,选择要下载的格式,就可以下载相应的音频或者视频了。 该网站非常简洁,使用也很简单。目前只…...
中科数安 |-透明加密软件_无感透明加密 - 源头有保障
中科数安的透明加密软件是一款专为保护企业数据安全而设计的高级产品,它采用了无感透明加密技术,确保源头数据的安全可靠。 ——www.weaem.com 以下是该软件的主要特点和功能概述: 无感透明加密: 中科数安的透明加密软件能够在用…...
ui自动化selenium,清新脱俗代码,框架升级讲解
一:简化 1. 新建common 包 新建diver.py 封装浏览器驱动类 from selenium import webdriverclass Driver():"""浏览器驱动类定义 一个【获取浏览器驱动对象driver的方法】。支持多种类型浏览器"""def get_driver(self,browser_typ…...
【吊打面试官系列-Mysql面试题】Myql 中的事务回滚机制概述 ?
大家好,我是锋哥。今天分享关于 【Myql 中的事务回滚机制概述 ?】面试题,希望对大家有帮助; Myql 中的事务回滚机制概述 ? 事务是用户定义的一个数据库操作序列,这些操作要么全做要么全不做,是一个不可分割的工作单位…...
VMware虚拟机三种网络模式设置 - Bridged(桥接模式)
一、前言 由于linux目前很热门,越来越多的人在学习linux,但是买一台服务放家里来学习,实在是很浪费。那么如何解决这个问题?虚拟机软件是很好的选择,常用的虚拟机软件有vmware workstations和virtual box等。 在使用虚…...
关于Panabit在资产平台中类型划分问题
现场同事问了一个问题:Panabit能不能当做CentOS接入? 我第一反应是:Panabit是个什么鬼?为啥要混编接入?后期维护都是事啊。所以,我就想回答:不能! 但是,最好要给出一个…...
【C语言】12.C语言内存函数
文章目录 1.memcpy使用和模拟实现2.memmove使用和模拟实现3.memset函数的使用4.memcmp函数的使用 memcpy:内存拷贝 memmove:内存移动 memset:内存设置 memcmp:内存比较 1.memcpy使用和模拟实现 memcpy:内存拷贝 void…...
Django:如何将多个数据表内容合在一起返回响应
一.概要 Django写后端返回响应时,通常需要返回的可能不是一个数据表的内容,还包括了这个数据表的外键所关联的其他表的一些字段,那该如何做才能把他们放在一起返回响应呢? 二.处理方法 在这里我有三个数据表 第一个是航空订单&…...
棱镜七彩荣获CNNVD两项大奖,专业能力与贡献再获认可!
6月18日,国家信息安全漏洞库(CNNVD)2023年度工作总结暨优秀表彰大会在中国信息安全测评中心成功举办。棱镜七彩凭借在漏洞方面的突出贡献和出色表现,被授予“2023年度优秀技术支撑单位”与“2023年度最佳新秀奖”。 优秀技术支撑单…...
uni-app中使用富文本rich-text个人经验
rich-text是在uni-app一个内置组件,用于高性能地渲染富文本内容。先贴一下官方的属性列表: 先说一下“selectable” 长按选择区域复制,这个我在APP项目中 不起作用,可能像文档说的,只支持“百度小程序”吧。在APP端起作…...
Matlab|基于V图的配电网电动汽车充电站选址定容-可视化
1主要内容 基于粒子群算法的电动汽车充电站和光伏最优选址和定容 关键词:选址定容 电动汽车 充电站位置 仿真平台:MATLAB 主要内容:代码主要做的是一个电动汽车充电站和分布式光伏的选址定容问题,提出了能够计及地理因素和服…...
从零开始! Jupyter Notebook的安装教程
🚀 从零开始! Jupyter Notebook的安装教程 摘要 📄 Jupyter Notebook 是一个广受欢迎的开源工具,特别适合数据科学和机器学习的开发者使用。本文将详细介绍从零开始安装 Jupyter Notebook 的步骤,包括各种操作系统的安装方法&am…...
web前端信息卡:深入探索与实用指南
web前端信息卡:深入探索与实用指南 在数字化时代,web前端信息卡已成为我们日常生活和工作中的重要组成部分。这些小巧而强大的工具,能够在有限的空间内展示丰富的信息,提升用户体验。然而,设计一个出色的web前端信息卡…...
之所以选择天津工业大学,因为它是双一流、报考难度适宜,性价比高!天津工业大学计算机考研考情分析!
天津工业大学(Tiangong University),简称“天工大”,位于天津市,是教育部与天津市共建高校、国家国防科技工业局和天津市共建的天津市重点建设高校、国家“双一流”建设高校、天津市高水平特色大学建设高校、中国研究生…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
