当前位置: 首页 > news >正文

[深度学习]--分类问题的排查错误的流程

原因复现:
原生的.pt 好使, 转化后的 CoreML不好使, 分类有问题。

yolov8 格式的支持情况

                   Format     Argument           Suffix    CPU    GPU
0                 PyTorch            -              .pt   True   True
1             TorchScript  torchscript     .torchscript   True   True
2                    ONNX         onnx            .onnx   True   True
3                OpenVINO     openvino  _openvino_model   True  False
4                TensorRT       engine          .engine  False   True
5                  CoreML       coreml       .mlpackage   True  False
6   TensorFlow SavedModel  saved_model     _saved_model   True   True
7     TensorFlow GraphDef           pb              .pb   True   True
8         TensorFlow Lite       tflite          .tflite   True  False
9     TensorFlow Edge TPU      edgetpu  _edgetpu.tflite   True  False
10          TensorFlow.js         tfjs       _web_model   True  False
11           PaddlePaddle       paddle    _paddle_model   True   True
12                   NCNN         ncnn      _ncnn_model   True   True

这里可以看到CoreML 只支持cpu, 尼玛tflite也是只支持cpu的

def test_coreml():detect_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/detect/train64/weights/best.pt'model_detect = YOLO(detect_weight)results = model_detect(source="/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.MP4",stream=True,classes=[3])class_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage'class_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage'model_class = YOLO(class_weight)# 要使用的字体fontFace = cv2.FONT_HERSHEY_SIMPLEXfontScale = 3thickness = 1img_count = 0for result in results:img_count+=1if img_count == 6:a = 1boxes = result.boxes  # Boxes object for bounding box outputsfor box in boxes:cls = box.cls.item()conf = box.conf.item()if conf > 0.5:x1,y1,x2,y2 = box.xyxy.tolist()[0]x1,y1,x2,y2 = int(x1),int(y1),int(x2),int(y2)orig_img = result.orig_img# H,W = orig_img.orig_shapecv2.imwrite("/home/justin/Desktop/code/python_project/Jersey-Number/runs/imgs"+"{:06d}-raw.jpg".format(img_count),orig_img)cropped_image = orig_img[y1:y2,x1:x2]# res_number_class = model_class(cropped_image,save_txt=True,save=True)res_number_class = model_class(cropped_image, device = "cpu")cv2.rectangle(orig_img, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2) for r in res_number_class:if hasattr(r,"probs"):if r.probs.top1conf.item() > 0.2:class_name = r.names[r.probs.top1](width, height), bottom = cv2.getTextSize(class_name, fontFace, fontScale=fontScale, thickness=thickness)cv2.putText(orig_img, class_name+" conf:"+str(r.probs.top1conf.item()), (x1 - width, y1-height), fontFace, fontScale, color=(0, 0, 255), thickness=thickness,lineType=cv2.LINE_AA)cv2.imwrite("/home/justin/Desktop/code/python_project/Jersey-Number/runs/imgs"+"{:06d}.jpg".format(img_count),orig_img)

报错的这句话值得看一眼:
sklearn不支持,tensorflow和torch没测试过,可能会有问题。 先跑跑再说吧

Loading /home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage for CoreML inference...
scikit-learn version 1.4.2 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.
TensorFlow version 2.13.1 has not been tested with coremltools. You may run into unexpected errors. TensorFlow 2.12.0 is the most recent version that has been tested.
Torch version 2.3.0+cu121 has not been tested with coremltools. You may run into unexpected errors. Torch 2.1.0 is the most recent version that has been tested.

所以还要降级,真是麻烦,tensorflow是因为要转android侧的模型。
这里要给个参数,来指定cpu复现
res_number_class = model_class(cropped_image, device = “cpu”)

这意思是不能用pytorch 跑了吗? @todo, 然后用pytorch 2.0的环境试一下看看怎么样?@todo,
核心诉求是要把coreml的模型加载起来,看看是不是存在一样的错误

Exception has occurred: Exception
Model prediction is only supported on macOS version 10.13 or later.File "/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.py", line 76, in test_coremlres_number_class = model_class(cropped_image, device = "cpu")^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.py", line 88, in <module>test_coreml()
Exception: Model prediction is only supported on macOS version 10.13 or later.
detect 参数
detect_conf = 0.5172230005264282
切割位置: x1,y1,x2,y2
1. 原始位置:[1648.0953369140625, 882.2176513671875, 1682.9732666015625, 980.842041015625]
2.强制转成int 为后面切出这个区域做准备(1648, 882, 1682, 980)分类输出结果:top1:64top1conf:tensor(0.9994, device='cuda:0')top5:[64, 53, 10, 0, 20]top5conf:tensor([9.9943e-01, 4.8942e-04, 1.9284e-05, 1.8095e-05, 8.8464e-06], device='cuda:0')

垃圾

shit CoreML模型只能在mac 上跑, 而且只能用CoreMl 跑么??? @todo???

确实只能在mac上跑
ref:
coreml的文档:
https://developer.apple.com/documentation/coreml
coremltool的文档:
https://apple.github.io/coremltools/docs-guides/
一段python代码:

import coremltools as ct
import PIL
import torch
import numpy as npdef get_x1y1x2y2(coordinate,img):width,height = img.size()center_x = int(coordinate[0] * width)center_y = int(coordinate[1] * height)img_w = int(coordinate[2]*width)img_h = int(coordinate[3]*height)return center_x, center_y, img_w, img_hdef ml_test_detect():mlmodel = ct.models.MLModel('/Users/smkj/Desktop/Code/justin/head_person_hoop_number_v8n.mlpackage')print(mlmodel)img = PIL.Image.open("/Users/smkj/Desktop/Code/justin/imgs000006-raw.jpg").resize((640,384))res = mlmodel.predict({"image":img})confidence_max_list = list(np.array(res['confidence']).argmax(axis=1))# array([0.86775684, 0.8630705 , 0.01861118, 0.09405255], dtype=float32)for row_index, class_id in enumerate(confidence_max_list):if class_id == 3:coordinate = res['coordinates'][row_index]x1,y1,x2,y2 = 555 - 12 / 2, 333  - 36 / 2, 555 + 12/2, 333 + 36/2im=img.crop((x1, y1, x2, y2))im.save("bbb.jpg")print(res)
# print(img)
def ml_test_classify():img = PIL.Image.open("/Users/smkj/Desktop/Code/justin/bbb.jpg").resize((64,64))mlmodel = ct.models.MLModel('/Users/smkj/Desktop/Code/justin/classification.mlpackage')res = mlmodel.predict({"image":img})max_key = max(res['classLabel_probs'], key=res['classLabel_probs'].get)print("class_name:",max_key, "confidence:",res['classLabel_probs'].get(max_key))a = 1
ml_test_classify()

在mac上安装opencv实在是太费劲了,各位自求多福吧!
用这个可以替代opencv: pip install pillow

在这里插入图片描述

置信度也是99.99

coreml不爽的点是必须要固定尺寸??? @todo 也许是我用惯了动态尺寸的原因。 anyway,今天调试了一天,在两个电脑上装了环境,算是搞定了。!!!

相关文章:

[深度学习]--分类问题的排查错误的流程

原因复现&#xff1a; 原生的.pt 好使&#xff0c; 转化后的 CoreML不好使&#xff0c; 分类有问题。 yolov8 格式的支持情况 Format Argument Suffix CPU GPU 0 PyTorch - .pt True True 1 Tor…...

微信小程序简易录音机

首先先创建一个项目&#xff08;想必大家都会啦那就直接开干&#xff09; 首先上html结构 <view class"wx-container"><view id"title">录音机</view><view id"time">{{hours}}:{{minute}}:{{second}}</view>&l…...

Ollama深度探索:AI大模型本地部署的全面教程

目录 引言一、Ollama概述1、定义与定位2、核心功能3、技术优势4、应用场景 二、安装与配置1、系统要求2、安装方法3、配置指南4、启动Ollama服务 四、快速开始1、启动Ollama2、部署运行模型3、REEST API 五、自定义模型1、定制化的必要性2、使用Modelfile定制模型3、参数调整4、…...

文心一言 VS 讯飞星火 VS chatgpt (285)-- 算法导论21.2 4题

四、请给出图 21-3 所示操作序列的一个运行时间的渐近紧确界&#xff0c;假定使用链表表示和加权合并启发式策略。如果要写代码&#xff0c;请用go语言。 文心一言&#xff1a; 图 21-3 没有直接给出&#xff0c;但通常这种操作序列可能与某种数据结构&#xff08;如并查集或…...

基于springboot实现影院订票系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现影院订票系统演示 摘要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本影院订票系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在…...

Linux 常用命令合集

进入root模式 su -> 回车 -> 输入root用户密码关闭系统 方法1&#xff1a; shutdown -h now 方法2&#xff1a; init 0 方法3&#xff1a; telinit 0按预定时间关闭系统 shutdown -h hours:minutes &取消按预定时间关闭系统 shutdown -c重启 shutdown -r now重启…...

Vue3插件安装

一、volar插件安装 volar&#xff1a;Vue文件的语法提示和高亮提醒。volar已经更名为Vue - Official&#xff0c;其安装步骤如下。 (1)打开vscode&#xff0c;点击扩展面板&#xff0c;在搜索窗口中输入volar&#xff0c;选择Vue - Official进行安装。 &#xff08;2&#xff0…...

Redis精要

一、什么是缓存击穿、缓存穿透、缓存雪崩&#xff1f; 缓存穿透 【针对大量非法访问的请求&#xff0c;缓存中没有&#xff0c;直接访问DB】 缓存穿透指的查询缓存和数据库中都不存在的数据&#xff0c;这样每次请求直接打到数据库&#xff0c;就好像缓存不存在 一样。 对于系…...

国产24位I2S输入+192kHz立体声DAC音频数模转换器CJC4344

CJC4344是一款立体声数模转换芯片&#xff0c;内含插值滤波器、multi bit数模转换器、输出模拟滤波器。CJC4344系列支持大部分的音频数据格式。CJC4344基于一个带线性模拟低通滤波器的四阶multi-bitΔ-Σ调制器&#xff0c;而且本芯片可以通过检测信号频率和主时钟频率&#xf…...

UniApp 开发微信小程序教程(一):准备工作和环境搭建,项目结构和配置

文章目录 一、准备工作和环境搭建1. 安装 HBuilderX步骤&#xff1a; 2. 注册微信开发者账号步骤&#xff1a; 3. 创建 UniApp 项目步骤&#xff1a; 二、项目结构和配置1. UniApp 项目结构2. 配置微信小程序修改 manifest.json修改 pages.json 3. 添加首页文件index.vue 示例&…...

[WTL/Win32]_[中级]_[MVP架构在实际项目中的应用]

场景 在开发Windows和macOS的界面软件时&#xff0c;Windows用的是WTL/Win32技术&#xff0c;而macOS用的是Cocoa技术。而两种技术的本地语言一个主打是C,另一个却是Object-c。界面软件的源码随着项目功能增多而增多&#xff0c;这就会给同步Windows和macOS的功能造成很大负担…...

《Windows API每日一练》5.2 按键消息

上一节中我们得知&#xff0c;Windows系统的按键消息有很多类型&#xff0c;大部分按键消息都是由Windows系统的默认窗口过程处理的&#xff0c;我们自己只需要处理少数几个按键消息。这一节我们将详细讲述Windows系统的所有按键消息及其处理方式。 本节必须掌握的知识点&…...

adb 截屏和录屏命令

adb 录屏命令 screenrecord 简介 screenrecord 是一个 shell 命令 支持 Android 4.4(API level 19)以上 支持视频格式: mp4 一些限制 某些设备可能无法直接录制,原因是分辨率太高,如果遇到此类问题&#xff0c;请试着指定较低的分辨率 不支持录制过程中屏幕旋转,如果录制…...

springboot相关的一些知识

SpringBoot可以同时处理多少请求 SpringBoot默认的内嵌容器是Tomcat&#xff0c;所以SpringBoot可以同时处理多少请求取决于Tomcat。 SpringBoot中处理请求数量相关的参数有四个&#xff1a; server.tomcat.thread.min-spare&#xff1a;最少的工作线程数&#xff0c;默认大小…...

DP:完全背包+多重背包问题

完全背包和01背包的区别就是&#xff1a;可以多次选 一、完全背包&#xff08;模版&#xff09; 【模板】完全背包_牛客题霸_牛客网 #include <iostream> #include<string.h> using namespace std; const int N1001; int n,V,w[N],v[N],dp[N][N]; //dp[i][j]表示…...

购物返利系统的安全性:防范欺诈与数据保护

购物返利系统的安全性&#xff1a;防范欺诈与数据保护 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 购物返利系统作为一种电子商务模式&#xff0c;通过向消…...

从WebM到MP3:利用Python和wxPython提取音乐的魔法

前言 有没有遇到过这样的问题&#xff1a;你有一个包含多首歌曲的WebM视频文件&#xff0c;但你只想提取其中的每一首歌曲&#xff0c;并将它们保存为单独的MP3文件&#xff1f;这听起来可能有些复杂&#xff0c;但借助Python和几个强大的库&#xff0c;这个任务变得异常简单。…...

图片转pdf,图片转pdf在线转换,在线图片转pdf

图片转PDF&#xff0c;听起来似乎是一个简单的操作&#xff0c;但实际上&#xff0c;它涉及到许多细节和技巧。有时候我们需要将图片转换为PDF格式&#xff0c;以便于分享、打印或保存。那么&#xff0c;如何将图片转换成PDF呢&#xff1f;接下来&#xff0c;我将为您详细介绍几…...

SpringBoot3使用Swagger3

SpringBoot3使用Swagger3 项目中的后端接口进行简单的前端展示一、依赖引入二、快速启动1.在application.yml中配置2.或者properties文件,则配置3.启动项目访问swagger 三、使用注解标注接口Swagger配置文件Swagger 注解迁移举例五种常用ApiApiOperationApiImplicitParamApiMod…...

【51单片机基础教程】点亮led

文章目录 前言51单片机点亮LED的原理硬件部分软件部分51单片机的寄存器编程步骤proteus仿真点亮一个led 点亮多个ledproteus仿真代码 流水灯 总结 前言 单片机&#xff08;Microcontroller Unit, MCU&#xff09;是一种集成电路&#xff0c;广泛应用于各种电子产品中。作为嵌入…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...