LangChain:如何高效管理 LLM 聊天历史记录?
LangChain 团队发布了一篇关于使用 Dragonfly DB 来有效管理 LangChain 应用程序聊天历史记录的教程。
该教程旨在解决用户在使用 LangChain 应用程序时普遍遇到的一个问题:如何高效地管理聊天历史记录。
LangChain 团队在推文中强调了 Dragonfly DB 在管理聊天历史记录中的重要性,并提供了相关教程链接,帮助用户更好地理解和使用 Dragonfly DB。
引言
在快速发展的软件开发领域,为实时 AI 驱动的应用程序(如聊天机器人)优化性能是一项重大挑战。大型语言模型(LLMs)是许多当今高级聊天机器人的核心,但它们本质上是无状态的,因此需要强大的机制来高效管理聊天上下文和会话数据。虽然传统数据库(如 Postgres)能够存储聊天记录,但添加一个具有快速访问速度和多功能数据结构的缓存层对于提高应用程序性能至关重要。
Dragonfly 是一个现代的、多线程的、兼容 Redis 的高性能内存数据存储解决方案,非常适合用于缓存聊天机器人上下文和会话数据。本文探讨了如何集成 Dragonfly 来大幅提升使用 LangChain 构建的聊天机器人的性能,实现对最近聊天会话的快速访问,并确保对话的连续性。所有代码片段可在 dragonfly-examples 仓库中找到。本文将使用 LangChain 库的 Python 版本。
使用 FastAPI 和 LangChain 构建聊天机器人
LangChain 是一个强大的 AI 优先工具包,它简化了使用高级语言模型(如 OpenAI 提供的模型)来创建互动 LLM 应用程序的过程。通过抽象出与这些模型交互的复杂性,LangChain 使开发人员能够专注于优化用户体验和增强对话能力。
考虑一个用户发起对话的简单示例:
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessagechat = ChatOpenAI(model=MODEL_NAME, temperature=0.2)
chat.invoke([ HumanMessage( content="My name is Joe. I would like to learn more about in-memory data stores!" ) ]
)# 内存数据存储是一种数据库管理系统,它将数据存储在计算机的主内存中,而不是在磁盘上。
# 这允许更快地访问数据,因为不需要从磁盘读取或写入数据。
在此场景中,LangChain 处理消息并利用 OpenAI 的 API 生成相关响应。尽管非常强大,但需要注意的是,像 OpenAI 这样的 LLM 本质上是无状态的。在处理初始提示并生成响应后,模型不会保留此交互的任何上下文。如果用户随后提出问题如“我的名字是什么,我想了解什么?”模型将无法回忆起之前的上下文。
这种无状态性在开发需要在多次交互中保持上下文的对话代理时会带来障碍,因为用户期望对话的连续性。如果没有额外层来管理对话上下文(或“状态”,“记忆”),聊天机器人可能会显得脱节,因为它无法识别过去的交互。
存储聊天会话
为了提供无缝和有吸引力的用户体验,必须实现一种机制,使聊天机器人能够记住之前的交互并保持上下文。一种方法是将我们的 LLM 交互包装为后端服务,使用传统数据库如 Postgres 来存储聊天会话和历史记录。
from sqlalchemy import Boolean, Column, ForeignKey, Integer, String
from sqlalchemy.orm import relationshipfrom database import Baseclass ChatSession(Base):__tablename__ = "chat_sessions" id = Column(Integer, primary_key=True) llm_name = Column(String, nullable=False) chat_histories = relationship("ChatHistory", back_populates="chat_session")class ChatHistory(Base):__tablename__ = "chat_histories" id = Column(Integer, primary_key=True) chat_session_id = Column(Integer, ForeignKey("chat_sessions.id"), nullable=False) is_human_message = Column(Boolean, nullable=False) content = Column(String, nullable=False) chat_session = relationship("ChatSession", back_populates="chat_histories")
我们的数据库模式包含两个主要实体:ChatSession
和 ChatHistory
。这些实体旨在记录并链接每次聊天会话中的每次交互,使用 SQLAlchemy,一个 Python SQL 工具包和 ORM。如上所示,每个聊天会话都与多个聊天历史记录相关联(多对一),每次需要与 LLM 交互时,我们都会将一堆先前的聊天历史记录(称为 上下文窗口)发送给它。通过这样做,LLM 可以“回忆”此对话的上下文并连续响应。LLM 通常有一个有限的上下文窗口,这意味着我们不能向它们发送无限数量的词或标记。
将一切包装为服务
我们将使用 FastAPI,这是一个现代的、快速的 web 框架,用于使用基于标准 Python 类型提示的 Python 3.6+ 构建 API。我们的第一个 API 端点旨在处理新聊天消息,通过 LangChain 交互 OpenAI API,并使用数据存储维护对话上下文。该端点接收用户发送的 ChatMessageCreate
对象的消息,该对象是用户发送的提示消息。它还有三个依赖项,如你可能猜到的:一个数据库连接,一个 Dragonfly 连接,以及一个由 LangChain 工具包提供的 OpenAI API 客户端。我们将详细介绍数据库和 Dragonfly 交互的更多细节。但这里的主要思想是我们将用户的第一个提示消息发送到 OpenAI,然后创建一个聊天会话记录以及前两个聊天历史记录(即提示和响应)。
@app.post("/chat")
async def new_chat(chat_message_human: ChatMessageCreate, db: Session = Depends(get_db_session), df: Dragonfly = Depends(get_dragonfly), chat: ChatOpenAI = Depends(get_chat),
) -> service.ChatSessionResponse:# 调用 OpenAI API 获取 AI 响应。 message = HumanMessage(content=chat_message_human.content) chat_message_ai = chat.invoke([message]) # 创建一个新的聊天会话,包含前两个聊天历史记录条目。chat_session = ChatSessionCreate(llm_name=LARGE_LANGUAGE_MODEL_NAME) new_chat_histories = __messages_to_histories(chat_message_human, chat_message_ai) srv = service.DataService(db, df) chat_session_response = srv.create_chat_session(chat_session, new_chat_histories) eturn chat_session_response
接下来,我们有以下端点来帮助用户继续与 LLM 的互动。类似的参数和依赖项存在,但这次我们接收聊天会话 ID,它是从上一个端点回复的,以便我们知道用户正在处理特定的聊天会话。我们检查聊天会话的存在性,检索该会话的过去某些数量的聊天历史记录,并将它们与用户新提供的提示消息一起发送给 LLM。通过这样做,LLM 将能够了解对话的上下文并相应地响应。
@app.patch("/chat/{chat_id}")
async def continue_chat(chat_id: int, chat_message_human: ChatMessageCreate, db: Session = Depends(get_db_session), df: Dragonfly = Depends(get_dragonfly), chat: ChatOpenAI = Depends(get_chat),
) -> service.ChatSessionResponse: # 检查聊天会话是否存在并加载聊天历史记录。 srv = service.DataService(db, df) prev_chat_session_response = srv.read_chat_histories(chat_id) if prev_chat_session_response is None: raise HTTPException(status_code=404, detail="chat not found") # 从聊天历史记录构建消息,然后附加新的用户消息。 chat_histories = prev_chat_session_response.chat_histories messages = [] for i in range(len(chat_histories)): if chat_histories[i].is_human_message: messages.append(HumanMessage(content=chat_histories[i].content)) else: messages.append(AIMessage(content=chat_histories[i].content)) messages.append(HumanMessage(content=chat_message_human.content)) # 调用 OpenAI API 获取 AI 响应。 chat_message_ai = chat.invoke(messages) # 将两个聊天历史记录条目添加到现有聊天会话中。 new_chat_histories = __messages_to_histories(chat_message_human, chat_message_ai) chat_session_response = srv.add_chat_histories(prev_chat_session_response, new_chat_histories) return chat_session_response
一个示例连续上下文对话可能如下所示:
{"chat_session_id": 1, "chat_histories": [ { "id": 1, "content": "I want to learn more about in-memory data store.", "is_human_message": true }, {"id": 2, "content": "An in-memory data store is a type of database management system that stores data in the main memory of a computer rather than on a disk or other storage device...", "is_human_message": false }, { "id": 3, "content": "What are some good use cases?", "is_human_message": true }, { "id": 4, "content": "In-memory data stores are well-suited for a variety of use cases where speed, performance, and real-time data access are critical. Some common use cases for in-memory data stores include:...", "is_human_message": false } ]
}
最后,我们有一个端点来检索聊天会话。想象一个用户在初次聊天几天后回来,我们仍然能够检索该聊天会话并从那里继续。
缓存最近的聊天会话
缓存是优化服务器端应用程序性能的关键技术。尽管我们无法优化 LLM 的内部工作方式,但有许多机会可以提高服务器的效率。**聊天机器人的交互通常在当前或最近的会话中最为频繁和密集。**用户动态地与机器人互动,通常需要机器人立即回忆对话的上下文。通过缓存这些最近的交互,我们确保聊天机器人能够立即访问会话信息,显著减少检索时间,提升用户体验。
Dragonfly 是缓存的理想解决方案,因为它具有高性能、多线程的能力。它被设计为一个强大的内存数据存储,提供极快的缓存数据访问速度。通过在 Dragonfly 中存储最近聊天会话的上下文和详细信息,我们的聊天机器人可以快速获取必要的信息,而无需反复查询主数据库。如上面的代码片段所示,我们的 DataService
类同时操作数据库和 Dragonfly。以 srv.read_chat_histories(chat_id)
路径为例,我们使用旁路缓存策略,首先尝试从 Dragonfly 读取。如果找到特定 chat_id
的聊天历史记录(作为排序集条目存储),我们可以快速返回响应。如果在 Dragonfly 中找不到键,我们会回退到读取数据库,并被动地在 Dragonfly 中缓存这些历史记录,设置一个过期时间。最近的聊天会话会在 Dragonfly 中随时可用,较旧的会话则不会被丢弃,而是持久存储在数据库中。这些会话由于访问可能性较低而不会主动保存在缓存中。但是,如果一个旧会话再次变得相关(可能是因为用户回到了过去的主题),上述机制会将这些会话从数据库中检索并重新缓存。
def read_chat_histories(self, chat_session_id: int) -> Union[ChatSessionResponse, None]:# 检查聊天历史记录是否缓存于 Dragonfly。 cache_svc = _DataCacheService(self.df) chat_history_responses = cache_svc.read_chat_histories(chat_session_id) if chat_history_responses is not None and len(chat_history_responses) > 0: return ChatSessionResponse(chat_session_id, chat_history_responses) # 如果聊天历史记录未缓存于 Dragonfly,则从数据库读取并缓存于 Dragonfly。 chat_histories = self.db.query(models.ChatHistory) \ .filter(models.ChatHistory.chat_session_id == chat_session_id) \ .order_by(models.ChatHistory.id) \ .limit(100) \ .all() if chat_histories is None or len(chat_histories) == 0: return None chat_history_responses = [ChatHistoryResponse(v.id, v.content, v.is_human_message) for v in chat_histories] cache_svc.add_chat_histories(chat_session_id, chat_history_responses) return ChatSessionResponse(chat_session_id, chat_history_responses)
缓存到磁盘比例:平衡成本和性能
虽然缓存的概念很简单——将数据暂时存储在更快的存储介质中以快速访问,但决定缓存什么数据以及缓存多长时间则更为复杂。一个看似微不足道但常常被忽视的问题是:为什么不缓存所有内容?让我们深入探讨为什么这种方法通常不可行,以及为什么一个出色的驱逐策略很重要。
内存与磁盘的权衡:速度与成本
内存相对于磁盘存储的主要优势在于速度。内存数据的访问时间显著快于磁盘检索。然而,这种速度是有代价的。内存的成本远高于磁盘存储,无论是初始投资还是维护费用。
递减效益
虽然缓存可以显著提升性能,但随着缓存的数据增多,效益会逐渐递减。这是因为并非所有存储的数据都经常被访问。在许多应用中,仅有一小部分数据经常被访问,而大部分数据很少被使用——这被称为 长尾效应,它与我们在聊天机器人示例中看到的情况完全吻合。将这些很少访问的长尾数据存储在昂贵的内存资源中,提供的性能提升相对于成本来说是最小的。
长尾效应
使用 Dragonfly 高效管理缓存
理解这些权衡,Dragonfly 采用了超越传统最近最少使用(LRU)或最少频繁使用(LFU)方法的先进缓存驱逐算法。这些传统算法并不总是与现代应用的实际使用模式相匹配,后者可能需要更不可预测地访问某些类型的数据。
Dragonfly 的驱逐算法旨在通过以下方式智能管理缓存空间:
- 根据访问的最近性和频率优先级数据:确保最相关和最常访问的数据在缓存中停留时间更长。
- 在达到内存限制之前主动驱逐数据:这有助于在不因缓存饱和而突然减速的情况下保持最佳性能。
通过这种方法,Dragonfly 优化了内存使用,确保系统在不增加不必要的内存成本的情况下保持响应性。要利用这一强大功能,只需在启动 Dragonfly 服务器时传递 --cache_mode=true
配置标志。
结论
LangChain 为使用 OpenAI 等 LLM 提供了一个强大的框架,使用 Dragonfly 等工具进行内存管理对于创建互动和连续的用户体验至关重要。通过采用智能缓存策略并维护动态内存数据存储,开发人员可以显著提升聊天机器人的响应速度和上下文感知能力。这不仅改善了用户交互,还优化了资源利用,有效平衡了成本和性能。
需要注意的是,尽管内存解决方案如 Dragonfly 提升了性能,但磁盘数据库对于长期数据持久性和完整性仍然至关重要。它们确保数据随着时间的推移保持安全和可检索,当缓存数据不可用时提供后备支持。缓存策略的探索和聊天会话管理的实际实现表明,通过使用合适的工具和方法,实现无状态 LLM 的有状态交互不仅是可能的,而且是高度有效的。除了先进的缓存驱逐算法,Dragonfly 还有许多吸引人的功能,如完全兼容 Redis 协议、高效的快照机制、Memcached 模式、集群模式等。立即开始使用 Dragonfly(下载社区版或申请免费 Dragonfly Cloud 试用)并构建你自己的惊人 AI 驱动应用程序!
相关文章:
![](https://img-blog.csdnimg.cn/img_convert/a0e21660e36969911a0178ee4ca84065.png)
LangChain:如何高效管理 LLM 聊天历史记录?
LangChain 团队发布了一篇关于使用 Dragonfly DB 来有效管理 LangChain 应用程序聊天历史记录的教程。 该教程旨在解决用户在使用 LangChain 应用程序时普遍遇到的一个问题:如何高效地管理聊天历史记录。 LangChain 团队在推文中强调了 Dragonfly DB 在管理聊天历…...
![](https://www.ngui.cc/images/no-images.jpg)
【React】useState 更新延迟的原因是什么,怎么解决?
useState 更新延迟的原因 异步更新:React 中的 useState 更新是异步的,这意味着当你调用更新函数(如 setData)时,React 并不立即同步更新状态,而是将其放入一个待处理的队列中,稍后在适当的时候(如在下一次渲染之前)进行处理。因此,如果你尝试在调用更新函数后立即读…...
![](https://img-blog.csdnimg.cn/direct/1a76927dd5634491a02c49223c0c4032.png)
非关系型数据库NoSQL数据层解决方案 之 redis springboot整合与读写操作 2024详解以及window版redis5.0.14下载百度网盘
redis下载安装以及基本使用 下载地址 链接:百度网盘 请输入提取码 提取码:0410 一个名对应一个数值 内存级 在内存里进行操作 准备启动 我们现在就有一个redis客户端的服务器了 我们再启动一个cmd 操作redis数据库 redis里面的基本数据类型有五种 …...
![](https://www.ngui.cc/images/no-images.jpg)
jigdo无法下载的文件
问题描述 用jigdo下载Debian的iso镜像,剩下最后一个文件下载不了,提示信息: Found 0 of the 1 files required by the template Copied input files to temporary file debian-12.5.0-amd64-DLBD-2.iso.tmp - repeat command and supply mo…...
![](https://www.ngui.cc/images/no-images.jpg)
C#面:C# 类的执行顺序?
C# 类的执行顺序可以分为以下几个步骤: 静态字段初始化:在类的第一次使用之前,静态字段会被初始化。静态字段的初始化顺序是按照它们在代码中的声明顺序进行的。静态构造函数:如果类中定义了静态构造函数,它会在类的第…...
![](https://img-blog.csdnimg.cn/direct/2be530e62a4b45919830e9a0676dc7b1.png)
昇思25天学习打卡营第3天|数据集Dataset
一、简介: 数据是深度学习的基础,高质量的数据输入将在整个深度神经网络中起到积极作用。有一种说法是模型最终训练的结果,10%受到算法影响,剩下的90%都是由训练的数据质量决定。(doge) MindSpore提供基于…...
![](https://www.ngui.cc/images/no-images.jpg)
SpringCloud 服务调用 spring-cloud-starter-openfeign
在Spring Cloud中,spring-cloud-starter-openfeign 是一个用于声明式Web服务客户端(例如REST客户端)的启动器。它使得在Spring Cloud应用中调用其他HTTP服务变得非常简单,只需创建一个接口并使用注解来定义服务调用的细节。 以下…...
![](https://img-blog.csdnimg.cn/direct/7a53263962a2409d9416372dd2519b59.png)
基于Elementui组件,在vue中实现多种省市区前端静态JSON数据展示并支持与后端交互功能,提供后端名称label和id
基于Elementui组件,在vue中实现多种省市区前端静态数据(本地JSON数据)展示并支持与后端交互功能,提供后端名称label和id 话不多说,先上图 1.支持传递给后端选中省市区的id和名称,示例非常完整,…...
![](https://img-blog.csdnimg.cn/img_convert/17e65d3f2e97c078c0a874e9eac2c648.png)
基于DPU的云原生裸金属网络解决方案
1. 方案背景和挑战 裸金属服务器是云上资源的重要部分,其网络需要与云上的虚拟机和容器互在同一个VPC下,并且能够像容器和虚拟机一样使用云的网络功能和能力。 传统的裸金属服务器使用开源的 OpenStack Ironic 组件,配合 OpenStack Neutron…...
![](https://www.ngui.cc/images/no-images.jpg)
pip install镜像源(更新和换源)
pip install镜像源(更新和换源) 1.pip安装依赖包默认访问的源: 因为服务器架设在国外的缘故,很多时候不好用网速不行,这时候就需要选择国内的一些安装源安装相应的包 https://pypi.Python.org/simple/2.设置默认源 …...
![](https://www.ngui.cc/images/no-images.jpg)
基础语法——组合与继承
继承 定义派生类,即继承的一般语法结构如下 class 派生类名 : [继承方式] 基类名 { }; 例如 class Point{int x, y; public:Point(int a0, int b0): x(a), y(b){}virtual double area() {return 0.0; };virtual double volume() { return 0.0; } }; class Circl…...
![](https://img-blog.csdnimg.cn/img_convert/1e272cfeee01d5b29923f55e715ee0c1.jpeg)
openGauss开发者大会、华为云HDC大会举行; PostgreSQL中国技术大会7月杭州开启
重要更新 1. openGauss Developer Day本周五于北京举行,大会聚集了相关行业专家、用户、伙伴和开发者,分享给予openGauss的联合创新成果和实践案例。([2] ) ;华为云 HDC 2024本周五于东莞松山湖举行,主题演讲主要覆盖鸿蒙、AI ([3…...
![](https://www.ngui.cc/images/no-images.jpg)
编译报错:No rule to make target xx/libcam.halmemory_intermediates/export_includes
问题现象: make: *** No rule to make target ‘out/target/product/testdd6737m_35g_m0/obj/STATIC_LIBRARIES/libcam.halmemory_intermediates/export_includes’, needed by ‘out/target/product/testdd6737m_35g_m0/obj/SHARED_LIBRARIES/libcam_platform_inte…...
![](https://img-blog.csdnimg.cn/direct/f449c37450b44cd28364c6825510ca80.png)
【备考指南】CDA Level Ⅰ 最全备考攻略
很多考生朋友在报名前后,一直不知道需要怎么备考,这里给大家盘点一下最全的备考攻略,希望对你有用: 1、需要准备好之后再报名吗? 不需要,CDA认证考试是报名后自行预约考试的,您可以先报名同时…...
![](https://img-blog.csdnimg.cn/direct/a68b3da1e4eb49f6a1a60e7955e970f7.png)
【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 5G基站光纤连接问题(200分) - 三语言AC题解(Python/Java/Cpp)
🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 …...
![](https://img-blog.csdnimg.cn/direct/30c66d1a4ed547b48ec91bfa507942e3.png)
分层Agent
分层Teams 分层Agent创建tool研究团队工具文档编写团队工具 通用能力定义Agent团队研究团队文档编写团队 添加图层 分层Agent 在前面的示例(Agent管理)中,我们引入了单个管理节点的概念,用于在不同工作节点之间路由工作。 但是&a…...
![](https://img-blog.csdnimg.cn/img_convert/54f844ef036b8aa6201c4decd8768dbd.png)
OS复习笔记ch11-1
外围设备的管理和磁盘调度 外围设备 从CPU的角度来看,外设有几个比较重要的I/O接口(interfaces) 状态reg:向CPU报告设备的状态(忙碌/空闲)命令reg:接收CPU命令,存储 CPU 需要执行的…...
![](https://www.ngui.cc/images/no-images.jpg)
Docker Compose 使用
一、简介 Docker Compose 是一个工具,用于定义和运行多容器 Docker 应用程序。它允许用户使用 YAML 文件来配置应用程序需要的所有服务,然后使用一个命令来从 YAML 文件配置中创建并启动所有服务。其主要目的是为了简化了多容器 Docker 应用程序的部署和…...
![](https://img-blog.csdnimg.cn/direct/5db11bd7e7c14188a204d3708f9d5bf5.png)
KEIL5.39 5.40 fromelf 不能生成HEX bug
使用AC6 编译,只要勾选了生成HEX。 结果报如下错误 暂时没有好的解决办法 1.替换法 2.在编译完后用命令生成HEX...
![](https://www.ngui.cc/images/no-images.jpg)
mongosh 和mongo 命令行连接MongoDB
Mongoshell MongoDB的Shell工具mongosh是一个全功能的JavaScript和Node.js的14.x REPL与MongoDB的部署交互环境。我们通过它可以直接对数据库进行查询和操作。这个工具是需要在安装玩MongoDB后单独安装的。 与传统的mongo方式连接MongoDB更加丰富。 官网 https://www.mongodb.…...
![](https://www.ngui.cc/images/no-images.jpg)
DOM 改变节点
DOM 改变节点 文档对象模型(DOM)是 HTML 和 XML 文档的编程接口。它提供了对文档的结构化表示,并定义了一种方式,允许程序和脚本动态地访问和更新文档的内容、结构和样式。在网页开发中,DOM 操作是核心技能之一&#…...
![](https://img-blog.csdnimg.cn/direct/780f829b6ca847f5a533a0b09be2e1a2.jpeg#pic_center#pic_center)
【面试题分享】重现 string.h 库常用的函数
文章目录 【面试题分享】重现 string.h 库常用的函数一、字符串复制1. strcpy(复制字符串直到遇到 null 终止符)2. strncpy(复制固定长度的字符串) 二、字符串连接1. strcat(将一个字符串连接到另一个字符串的末尾&…...
![](https://img-blog.csdnimg.cn/direct/eeaca97b991241449ce4ebebf020a356.png)
6.21 移动语义与智能指针
//先构造,再拷贝构造//利用"hello"这个字符串创建了一个临时对象//并复制给了s3//这一步实际上new了两次String s3 "hello"; 背景需求: 这个隐式创建的字符串出了该行就直接销毁掉,效率比较低 可以让_pstr指向这个空间…...
![](https://img-blog.csdnimg.cn/direct/d6ff9c559d1a4d5f85f6d31437ba1bd3.png)
Kimi还能对学术论文进行润色?我来教你!
学境思源,一键生成论文初稿: AcademicIdeas - 学境思源AI论文写作 一、引言 在学术界,论文的质量往往决定了研究的可信度和影响力。Kimi作为一款人工智能助手,可以为学术论文的润色提供有效的帮助。本文将详细介绍如何利用Kimi进…...
![](https://img-blog.csdnimg.cn/img_convert/5798d818504b7ff23c6513eadec79823.jpeg)
智汇云舟成为中煤集团中煤智能创新联盟成员单位
6月21日,第八届世界智能产业博览会平行会议暨中煤智能创新联盟交流会在天津水游城丽筠酒店顺利举行。智汇云舟受邀参与,并由中国中煤能源集团授予荣誉证书,正式成为中煤智能创新联盟成员单位。会议上,清华大学、中国矿业大学&…...
![](https://img-blog.csdnimg.cn/direct/89fa01b50e7348cfa5fe0b0f1f023961.png)
【文心智能体大赛】迎接属于你的休闲娱乐导师!
迎接属于你的休闲娱乐导师! 前言创建智能体发布智能体最后结语 前言 文心智能体平台AgentBuilder 是百度推出的基于文心大模型的智能体(Agent)平台,支持广大开发者根据自身行业领域、应用场景,选取不同类型的开发方式&…...
![](https://www.ngui.cc/images/no-images.jpg)
AI:音乐创作的未来还是毁灭的序曲?
AI:音乐创作的未来还是毁灭的序曲? 随着人工智能(AI)技术的飞速发展,它已经渗透到了我们生活的方方面面,包括音乐领域。然而,AI在音乐创作中的角色引发了广泛的讨论和争议。一些人认为AI为音乐…...
![](https://www.ngui.cc/images/no-images.jpg)
如何通过AI进行智能日志异常检测
智能日志异常检测是一种利用人工智能(AI)技术来自动识别日志数据中异常模式或行为的方法。传统日志监控依赖于预定义规则,而智能日志异常检测可以适应不同的日志模式和异常类型,提高检测准确性和效率。下面是一个完整的步骤指南&a…...
![](https://img-blog.csdnimg.cn/direct/d4a3f7989b534e9b8b67a6fa085b1129.jpeg)
C++ GPU编程(英伟达CUDA)
安装编译环境 https://developer.download.nvidia.com/compute/cuda/12.5.0/local_installers/cuda_12.5.0_555.85_windows.exe CMakeLists.txt cmake_minimum_required(VERSION 3.10)set(CMAKE_CXX_STANDARD 17) set(CMAKE_BUILD_TYPE Release) #set(CMAKE_CUDA_ARCHITECTUR…...
![](https://img-blog.csdnimg.cn/direct/4676a6db165e4dc79d4b5ec99023a454.png)
肾虚学习实验第T1周:实现mnist手写数字识别
>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客** >- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)** 目录 一、前言 作为一名研究牲࿰…...
![](https://yqfile.alicdn.com/img_723d40f202b55210196849579a8995e5.png)
ps线下培训班一般学费多少/关键词怎样做优化排名
记一次用WPScan辅助渗透WordPress站点 一、什么是WPScan? WPScan 是一个扫描 WordPress 漏洞的黑盒子扫描器,它可以为所有 Web 开发人员扫描 WordPress 漏洞并在他们开发前找到并解决问题。我们还使用了 Nikto ,它是一款非常棒的 Web 服务器评…...
![](/images/no-images.jpg)
小吃网站怎么做/友链交换网站
let 和 var 的区别 最近很多前端的朋友去面试被问到let和var的区别,其实阮一峰老师的ES6中已经很详细介绍了let的用法和var的区别。我简单总结一下,以便各位以后面试中使用。 ES6 新增了let命令,用来声明局部变量。它的用法类似于var&#…...
![](/images/no-images.jpg)
滨海做网站的公司/东莞网站建设推广品众
在平时工作中,我们有时候需要对JSON 的某一个字段进行提取, 样例数据 : {"a1":22,"a2":"23"} {"a2":"23","a1":2233,a3:"22"} 可以使用 grep 完成功能࿱…...
![](/images/no-images.jpg)
有谁知道知乎网站是谁做的/四川餐饮培训学校排名
region数量的影响: 通常较少的region可使集群运行的更加平稳,官方指出,每个regionServer大约100个regions的时候效果最佳,理由如下: 1)hbase的一个特性MSLAB,它有助于防止堆内存的碎片化&#x…...
![](/images/no-images.jpg)
南昌哪个公司做网站好/免费的网站软件
很抱歉,作为一个 AI 语言模型,我不能为您完整写一篇本科毕业论文并以 .dwcx 格式输出。但是,我可以给您提供一些相关的资料,并且帮助您更好地理解和研究这个课题。如果您需要具体的建议和帮助,请告诉我您具体需要解决的…...
![](/images/no-images.jpg)
新网网站模板/seo挂机赚钱
进程和线程的结束 在执行体层,线程的终止函数是NtTerminateThread,内部调用PspTerminateThreadByPointer完成终止处理。系统线程的终止函数是PsTerminateSystemThread,内部调用 PspTerminateThreadByPointer完成终止处理。 三个函数原型如下: NTSTAT…...