Python每日一练(20230311)

目录
1. 合并两个有序数组
2. 二叉树的右视图
3. 拼接最大数
🌟 每日一练刷题专栏
C/C++ 每日一练 专栏
Python 每日一练 专栏
1. 合并两个有序数组
给你两个有序整数数组 nums1 和 nums2,请你将 nums2 合并到 nums1 中,使 nums1 成为一个有序数组。
初始化 nums1 和 nums2 的元素数量分别为 m 和 n 。你可以假设 nums1 的空间大小等于 m + n,这样它就有足够的空间保存来自 nums2 的元素。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 输出:[1,2,2,3,5,6]
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0 输出:[1]
提示:
nums1.length == m + nnums2.length == n0 <= m, n <= 2001 <= m + n <= 200-10^9 <= nums1[i], nums2[i] <= 10^9
代码:
class Solution(object):def merge(self, nums1, m, nums2, n):""":type nums1: List[int]:type m: int:type nums2: List[int]:type n: int:rtype: void Do not return anything, modify nums1 in-place instead."""p1, p2 = m - 1, n - 1pos = m + n - 1while p1 >= 0 and p2 >= 0:if nums1[p1] >= nums2[p2]:nums1[pos] = nums1[p1]p1 -= 1else:nums1[pos] = nums2[p2]p2 -= 1pos -= 1while p2 >= 0:nums1[pos] = nums2[p2]p2 -= 1pos -= 1return nums1# %%
s = Solution()
print(s.merge(nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3))
输出:
[1, 2, 2, 3, 5, 6]
2. 二叉树的右视图
给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
示例 1:

输入: [1,2,3,null,5,null,4] 输出: [1,3,4]
示例 2:
输入: [1,null,3] 输出: [1,3]
示例 3:
输入: [] 输出: []
提示:
- 二叉树的节点个数的范围是
[0,100] -100 <= Node.val <= 100
代码:
class TreeNode:def __init__(self, x):self.val = xself.left = Noneself.right = Noneclass Solution:def rightSideView(self, root: TreeNode) -> list:if not root:return []res = []curnode = [root]nexnode = []res.append(curnode[0].val)while curnode:for s in curnode:if s.right:nexnode.append(s.right)if s.left:nexnode.append(s.left)if nexnode:res.append(nexnode[0].val)curnode = nexnodenexnode = []return resdef listToTree(lst: list) -> TreeNode:if not lst:return Noneroot = TreeNode(lst[0])queue = [root]i = 1while i < len(lst):node = queue.pop(0)if lst[i] is not None:node.left = TreeNode(lst[i])queue.append(node.left)i += 1if i < len(lst) and lst[i] is not None:node.right = TreeNode(lst[i])queue.append(node.right)i += 1return rootdef inorderTraversal(root: TreeNode) -> list:if not root:return []res = []res += inorderTraversal(root.left)res.append(root.val)res += inorderTraversal(root.right)return res# %%
s = Solution()
null = Nonenums = [1,2,3,null,5,null,4]
root = listToTree(nums)
print(s.rightSideView(root))
print(inorderTraversal(root)) #testnums = [1,null,3]
root = listToTree(nums)
print(s.rightSideView(root))
print(inorderTraversal(root)) #test
输出:
[1, 3, 4]
[2, 5, 1, 3, 4]
[1, 3]
[1, 3]
3. 拼接最大数
给定长度分别为 m 和 n 的两个数组,其元素由 0-9 构成,表示两个自然数各位上的数字。现在从这两个数组中选出 k (k <= m + n) 个数字拼接成一个新的数,要求从同一个数组中取出的数字保持其在原数组中的相对顺序。
求满足该条件的最大数。结果返回一个表示该最大数的长度为 k 的数组。
说明: 请尽可能地优化你算法的时间和空间复杂度。
示例 1:
输入: nums1 = [3, 4, 6, 5] nums2 = [9, 1, 2, 5, 8, 3] k = 5 输出:[9, 8, 6, 5, 3]
示例 2:
输入: nums1 = [6, 7] nums2 = [6, 0, 4] k = 5 输出:[6, 7, 6, 0, 4]
示例 3:
输入: nums1 = [3, 9] nums2 = [8, 9] k = 3 输出:[9, 8, 9]
代码:
class Solution:def maxNumber(self, nums1: list, nums2: list, k: int) -> list:def pick_max(nums, k):stack = []drop = len(nums) - kfor num in nums:while drop and stack and stack[-1] < num:stack.pop()drop -= 1stack.append(num)return stack[:k]def merge(A, B):lst = []while A or B:bigger = A if A > B else Blst.append(bigger[0])bigger.pop(0)return lstreturn max(merge(pick_max(nums1, i), pick_max(nums2, k - i))for i in range(k + 1)if i <= len(nums1) and k - i <= len(nums2))
# %%
s = Solution()
print(s.maxNumber(nums1 = [3,4,6,5], nums2 = [9,1,2,5,8,3], k = 5))
print(s.maxNumber(nums1 = [6,7], nums2 = [6,0,4], k = 5))
print(s.maxNumber(nums1 = [3,9], nums2 = [8,9], k = 3))
输出:
[9, 8, 6, 5, 3]
[6, 7, 6, 0, 4]
[9, 8, 9]
注:max(迭代推导式) --> max(i for i in [3,6,4,5] if i%2)
🌟 每日一练刷题专栏
✨ 持续,努力奋斗做强刷题搬运工!
👍 点赞,你的认可是我坚持的动力!
★ 收藏,你的青睐是我努力的方向!
✏️ 评论,你的意见是我进步的财富!
| C/C++ 每日一练 专栏 |
| Python 每日一练 专栏 |
相关文章:
Python每日一练(20230311)
目录 1. 合并两个有序数组 2. 二叉树的右视图 3. 拼接最大数 🌟 每日一练刷题专栏 C/C 每日一练 专栏 Python 每日一练 专栏 1. 合并两个有序数组 给你两个有序整数数组 nums1 和 nums2,请你将 nums2 合并到 nums1 中,使 nums1 成为…...
202109-3 CCF 脉冲神经网络 66分题解 + 解题思路 + 解题过程
解题思路 根据题意,脉冲源的阈值大于随机数时,会向其所有出点发送脉冲 神经元当v>30时,会向其所有出点发送脉冲,unordered_map <int, vector > ne; //存储神经元/脉冲源的所有出点集合vector 所有脉冲会有一定的延迟&am…...
Aurora简介
Amazon Aurora是一种兼容MySQL和PostgreSQL的商用级别关系数据库,它既有商用数据库的性能和可用性(比如Oracle数据库),又具有开源数据库的成本效益(比如MySQL数据库)。 Aurora的速度可以达到MySQL数据库的…...
【python实操】用python写软件弹窗
文章目录前言组件label 与 多行文本复选框组件Radiobutton单选组件Frame框架组件labelframe标签框架列表框Listboxscrollbar滚动条组件scale刻度条组件spinbox组件Toplevel子窗体组件PanedWindow组件Menu下拉菜单弹出菜单总结针对组件前言 python学习之路任重而道远࿰…...
Ubuntu 常用操作
版本22.04 1、开启 root # 输入新密码 sudo passwd rootUbuntu以root账号登录桌面 默认情况是不允许用root帐号直接登录图形界面的。 Ubuntu 默认使用 GNOME,GNOME 使用 GDM 显示管理器。 为了允许以 root 身份登录到 GNOME,你需要对位于 /etc/…...
井字棋--课后程序(Python程序开发案例教程-黑马程序员编著-第7章-课后作业)
实例2:井字棋 井字棋是一种在3 * 3格子上进行的连珠游戏,又称井字游戏。井字棋的游戏有两名玩家,其中一个玩家画圈,另一个玩家画叉,轮流在3 * 3格子上画上自己的符号,最先在横向、纵向、或斜线方向连成一条…...
谷粒学院开发(三):统一日志、异常及前端准备工作
特定异常处理 ControllerAdvice public class GlobalExceptionHandler {ExceptionHandler(Exception.class) // 指定出现什么异常会被处理ResponseBody // 为了能够返回数据public R error(Exception e) {e.printStackTrace();return R.error().message("执行了全局异常…...
华为OD机试题 - 招聘(JavaScript)| 机考必刷
更多题库,搜索引擎搜 梦想橡皮擦华为OD 👑👑👑 更多华为OD题库,搜 梦想橡皮擦 华为OD 👑👑👑 更多华为机考题库,搜 梦想橡皮擦华为OD 👑👑👑 华为OD机试题 最近更新的博客使用说明本篇题解:招聘题目输入输出示例一输入输出说明示例二输入输出说明示例三输…...
关于SQL优化的几点说明
1. ORACLE DBA是如何进行SQL优化的 作为一个Oracle数据库管理员(DBA),SQL优化是他们的日常工作之一,主要目标是优化查询性能,减少查询时间,并提高数据库的整体性能。 以下是Oracle DBA如何进行SQL优化的一般流程: 监控…...
使用高精度秒表StopWatch测试DateTime.Now的精度
StopWatch使用的命名空间:using System.Diagnostics;StopWatch的使用方法:创建Stopwatch对象:stopwatch;stopwatch计时表开启:stopwatch.Start();stopwatch计时表关闭:stopwatch.Stop();计算stopwatch.Stop…...
【C++】vector的使用及其模拟实现
这里写目录标题一、vector的介绍及使用1. vector的介绍2. 构造函数3. 遍历方式4. 容量操作及空间增长问题5. 增删查改6. vector二维数组二、vector的模拟实现1. 构造函数2. 迭代器和基本接口3. reserve和resize4. push_back和pop_back5. insert和erase5. 迭代器失效问题5. 浅拷…...
[洛谷-P2585][ZJOI2006]三色二叉树(树形DP+状态机DP)
[洛谷-P2585][ZJOI2006]三色二叉树(树形DP状态机DP)一、题目题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1提示数据规模与约定二、分析1、递归建树2、树形DP 状态机DP(1)状态表示(2)状态转移三、…...
BI技巧丨计算组
PowerBI有三大工具,分别是DAX Studio,Tabular Editor和Bravo。 DAX Studio通常我们会用来进行性能分析和DAX调优使用,Bravo一般用来批量格式化DAX,而Tabular Editor主要的功能就是计算组。 计算组这个名词,相信很多小伙…...
PMP项目管理项目范围管理
目录1 项目范围管理概述2 规划范围管理3 收集需求4 定义范围5 创建 WBS6 确认范围7 控制范围1 项目范围管理概述 项目范围管理包括确保项目做且只做所需的全部工作,以成功完成项目的各 个过程。管理项目范围主要在于定义和控制哪些工作应在项目内,哪些工…...
Flink 定时加载数据源
一、简介 flink 自定义实时数据源使用流处理比较简单,比如 Kafka、MQ 等,如果使用 MySQL、redis 批处理也比较简单 如果需要定时加载数据作为 flink 数据源使用流处理,比如定时从 mysql 或者 redis 获取一批数据,传入 flink 做处…...
ChatGPT、人工智能、人类和一些酒桌闲聊
© 2023 Conmajia Initiated 10th March, 2023 昨天跟某化学家喝酒,期间提到了 ChatGPT。他的评价是:这鬼东西大量输出毫无意义、错漏百出甚至是虚假的信息,“in a confident accent”。例如某次 GPT 针对“描述某某记者”这一问题&#…...
WebRTC开源库内部调用abort函数引发程序发生闪退问题的排查
目录 1、初始问题描述 2、使用Process Explorer工具查看到处理音视频业务的rtcmpdll.dll模块没有加载起来 3、使用Dependency Walker工具查看到rtcmpdll.dll依赖的库有问题 4、更新库之后Debug程序启动时就发生异常,程序闪退 5、VS调试时看不到有效的函数调用堆…...
Golang并发编程
Golang并发编程 文章目录Golang并发编程1. 协程2. channel2.1 channel的创建2.2 使用waitGroup实现同步3. 并发编程3.1 并发编程之runtime包3.2 mutex互斥锁3.3 channel遍历3.3.1 for if遍历3.3.2 for range3.4 select switch3.5 Timer3.5.1 time.NewTimer()3.5.2 Stop、reset…...
windows+Anaconda环境下安装BERT成功安装方法及问题汇总
前言 在WindowsAnaconda环境下安装BERT,遇到各种问题,几经磨难,最终成功。接下来,先介绍成功的安装方法,再附上遇到的问题汇总 成功的安装方法 1、创建虚拟环境 注意:必须加上python3.7.12以创建环境&a…...
git - 简易指南
git - 简易指南 创建新仓库 创建新文件夹,打开,然后执行 git init 以创建新的 git 仓库。 检出仓库 执行如下命令以创建一个本地仓库的克隆版本: git clone /path/to/repository 如果是远端服务器上的仓库,你的命令会是这个样…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
