当前位置: 首页 > news >正文

【深度神经网络 (DNN)】

深度神经网络 (DNN)

深度神经网络 (DNN) 是机器学习领域中一种强大的工具,它由多层神经元组成,能够学习复杂的数据模式,解决各种任务,如图像识别、语音识别、自然语言处理等。

DNN 的构成:

神经元: DNN 的基本单元,接收多个输入,并通过激活函数输出一个值。
层: 多个神经元按特定结构排列,形成层。
连接: 神经元之间通过权重连接,权重决定了信号传递的强度。
激活函数: 用于引入非线性,使网络能够学习更复杂的关系。
损失函数: 用于衡量模型预测值与真实值之间的差距。
优化算法: 用于更新网络参数,降低损失函数的值。

DNN 的优势:

强大的学习能力: DNN 可以学习复杂的数据模式,解决线性模型难以处理的非线性问题。
端到端训练: DNN 可以对整个模型进行端到端训练,避免人工特征工程的繁琐步骤。
自动特征提取: DNN 可以自动学习数据的关键特征,无需人工干预。
适应性强: DNN 可以适应各种数据类型和任务,具有很高的通用性。

DNN 的常见类型:

卷积神经网络 (CNN): 擅长处理图像数据,利用卷积操作提取特征。
循环神经网络 (RNN): 擅长处理序列数据,如文本和音频,利用循环结构保留时序信息。
长短期记忆网络 (LSTM): 是 RNN 的一种变体,能够处理更长的序列数据。
生成对抗网络 (GAN): 用于生成与真实数据相似的新数据,由生成器和判别器组成。

DNN 的应用:

图像识别: 目标检测、人脸识别、图像分类
语音识别: 语音转文字、语音控制
自然语言处理: 机器翻译、文本摘要、问答系统
推荐系统: 个性化推荐、商品推荐
医疗诊断: 疾病预测、影像分析
DNN 的挑战:
数据需求量大: DNN 需要大量的训练数据才能达到良好的性能。
训练时间长: DNN 的训练过程可能需要很长时间。
模型复杂性: DNN 的模型结构可能非常复杂,难以理解和解释。
过度拟合: DNN 容易过度拟合训练数据,导致在测试数据上表现不佳。
学习资源:
Coursera: “Neural Networks and Deep Learning” by Andrew Ng
Deep Learning Book: https://www.deeplearningbook.org/
斯坦福大学CS231n: http://cs231n.stanford.edu/

总结:

深度神经网络是机器学习领域的一种强大工具,拥有强大的学习能力和适应性,在各种领域得到广泛应用。然而,DNN 也面临着数据需求量大、训练时间长等挑战,需要谨慎选择和优化。

相关文章:

【深度神经网络 (DNN)】

深度神经网络 (DNN) 深度神经网络 (DNN) 是机器学习领域中一种强大的工具,它由多层神经元组成,能够学习复杂的数据模式,解决各种任务,如图像识别、语音识别、自然语言处理等。 DNN 的构成: 神经元: DNN 的基本单元&…...

ES全文检索支持繁简和IK分词检索

ES全文检索支持繁简和IK分词检索 1. 前言2. 引入繁简转换插件analysis-stconvert2.1 下载已有作者编译后的包文件2.2 下载源码进行编译2.3 复制解压插件到es安装目录的plugins文件夹下 3. 引入ik分词器插件3.1 已有作者编译后的包文件3.2 只有源代码的版本3.3 安装ik分词插件 4…...

解决Visual Studio Code在Ubuntu上崩溃的问题

解决Visual Studio Code在Ubuntu上崩溃的问题 我正在使用Ubuntu系统,每次打开Visual Studio Code时,只能短暂打开一秒钟,然后就会崩溃。当通过终端使用code --verbose命令启动Visual Studio Code时,出现以下错误信息:…...

【OpenGauss源码学习 —— (ALTER TABLE(SET attribute_option))】

ALTER TABLE(SET attribute_option) ATExecSetOptions 函数 声明:本文的部分内容参考了他人的文章。在编写过程中,我们尊重他人的知识产权和学术成果,力求遵循合理使用原则,并在适用的情况下注明引用来源。…...

Elasticsearch 数据提取 - 最适合这项工作的工具是什么?

作者:来自 Elastic Josh Asres 了解在 Elasticsearch 中为你的搜索用例提取数据的所有不同方式。 对于搜索用例,高效采集和处理来自各种来源的数据的能力至关重要。无论你处理的是 SQL 数据库、CRM 还是任何自定义数据源,选择正确的数据采集…...

‘浔川画板v5.1’即将上线!——浔川python社

1 简介: 浔川画板是一款专业的数字绘画和漫画创作软件,它为艺术家和设计师提供了丰富的绘画工具、色彩管理功能以及易于使用的界面。用户可以使用浔川画板进行手绘风格的绘画、精细的素描、漫画分格、UI设计等多种创作。该软件支持多种笔刷和特效&#…...

RockChip Android12 System之Datetime

一:概述 本文将针对Android12 Settings二级菜单System中Date&time的UI修改进行说明。 二:Date&Time 1、Activity packages/apps/Settings/AndroidManifest.xml <activityandroid:name="Settings$DateTimeSettingsActivity"android:label="@stri…...

详解 ClickHouse 的副本机制

一、简介 副本功能只支持 MergeTree Family 的表引擎&#xff0c;参考文档&#xff1a;https://clickhouse.tech/docs/en/engines/table-engines/mergetree-family/replication/ ClickHouse 副本的目的主要是保障数据的高可用性&#xff0c;即使一台 ClickHouse 节点宕机&#…...

速卖通测评成本低见效快,自养号测评的实操指南,快速积累销量和好评

对于初入速卖通的新卖家而言&#xff0c;销量和评价的积累显得尤为关键。由于新店铺往往难以获得平台活动的青睐&#xff0c;因此流量的获取成为了一大挑战。在这样的背景下&#xff0c;进行产品测评以积累正面的用户反馈和销售记录&#xff0c;成为了提升店铺信誉和吸引潜在顾…...

php反序列化漏洞简介

目录 php序列化和反序列化简介 序列化 反序列化 类中定义的属性 序列化实例 反序列化实例 反序列化漏洞 序列化返回的字符串格式 魔术方法和反序列化利用 绕过wakeup 靶场实战 修复方法 php序列化和反序列化简介 序列化 将对象状态转换为可保持或可传输的格式的…...

力扣随机一题 模拟+字符串

博客主页&#xff1a;誓则盟约系列专栏&#xff1a;IT竞赛 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 1910.删除一个字符串中所有出现的给定子字符串【中等】 题目&#xff1a; …...

java-正则表达式 1

Java中的正则表达式 1. 正则表达式的基本概念 正则表达式&#xff08;Regular Expression, regex&#xff09;是一种用于匹配字符串中字符组合的模式。正则表达式广泛应用于字符串搜索、替换和解析。Java通过java.util.regex包提供了对正则表达式的支持&#xff0c;该包包含两…...

Python xlrd库:读excel表格

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...

开发中遇到的一个bug

遇到的报错信息是这样的&#xff1a; java: Annotation processing is not supported for module cycles. Please ensure that all modules from cycle [hm-api,hm-common,hm-service] are excluded from annotation processing 翻译过来就是存在循环引用的情况&#xff0c;导…...

Java面试题:对比不同的垃圾收集器(如Serial、Parallel、CMS、G1)及其适用场景

Java虚拟机&#xff08;JVM&#xff09;提供了多种垃圾收集器&#xff0c;每种垃圾收集器在性能和适用场景上各有不同。以下是对几种常见垃圾收集器&#xff08;Serial、Parallel、CMS、G1&#xff09;的对比及其适用场景的详细介绍&#xff1a; 1. Serial 垃圾收集器 Serial…...

每日一题——冒泡排序

C语言——冒泡排序 冒泡排序练习 前言&#xff1a;CSDN的小伙伴们&#xff0c;大家好&#xff01;今天我来给大家分享一种解题思想——冒泡排序。 冒泡排序 冒泡法的核心思想&#xff1a;两两相邻的元素进行比较 2.冒泡排序的算法描述如下。 (1)比较相邻的元素。如果第一 个比…...

javascript浏览器对象模型

BOM对象&#xff1a; BOM 是浏览器对象模型的简称。JavaScript 将整个浏览器窗口按照实现的功能不同拆分成若干个对象&#xff1b; 包含&#xff1a;window 对象、history 对象、location 对象和 document 对象等 window对象&#xff1a; 常用方法&#xff1a; 1.prompt();…...

C语言之链表以及单链表的实现

一&#xff1a;链表的引入 1&#xff1a;从数组的缺陷说起 &#xff08;1&#xff09;数组有两个缺陷。一个是数组中所有元素类型必须一致&#xff0c;第二是数组的元素个数必须事先指定并且一旦指定后不能更改 &#xff08;2&#xff09;如何解决数组的两个缺陷&#xff1a;数…...

AI在线免费视频工具2:视频配声音;图片说话hedra

1、视频配声音 https://deepmind.google/discover/blog/generating-audio-for-video/ https://www.videotosoundeffects.com/ &#xff08;免费在线使用&#xff09; 2、图片说话在线图片生成播报hedra hedra 上传音频与图片即可合成 https://www.hedra.com/ https://www.…...

Elastic字段映射(_source,doc_value,fileddata,index,store)

Elastic字段映射&#xff08;_source,doc_value,filed_data,index,store&#xff09; _source&#xff1a; source 字段用于存储 post 到 ES 的原始 json 文档。为什么要存储原始文档呢&#xff1f;因为 ES 采用倒排索引对文本进行搜索&#xff0c;而倒排索引无法存储原始输入…...

kotlin空类型安全 !! ?. ?:

1、定义可空类型 fun main(){// 定义可空类型var x:String? "hello"x null } 2、!! 强转类型 定义可空类型之后&#xff0c;如果使用其内置方法&#xff0c;编译不会通过&#xff0c;因为值有可能为null&#xff0c;可以使用 !! 把类型强转为不可空&#xff1a…...

通过 WireGuard 组建虚拟局域网 实现多个局域网全互联

本文后半部分代码框较多,欢迎点击原文链接获得更佳的阅读体验。 前言 上一篇关于 WireGuard 的文章通过 Docker 安装 wg-easy 的形式来使用 WireGuard,但 wg-easy 的功能比较有限,并不能发挥出 WireGuard 的全部功力。 如果只是想要出门在外连随时随地的连回家里的局域网,…...

qmt量化交易策略小白学习笔记第47期【qmt编程之期货仓单】

qmt编程之获取期货数据 qmt更加详细的教程方法&#xff0c;会持续慢慢梳理。 也可找寻博主的历史文章&#xff0c;搜索关键词查看解决方案 &#xff01; 感谢关注&#xff0c;咨询免费开通量化回测与获取实盘权限&#xff0c;欢迎和博主联系&#xff01; 期货仓单 提示 1…...

点云处理中阶 Sampling

目录 一、什么是点云Sampling 二、示例代码 1、下采样 Downsampling 2、均匀采样 3、上采样 4、表面重建 一、什么是点云Sampling 点云处理中的采样(sampling)是指从大量点云数据中选取一部分代表性的数据点,以减少计算复杂度和内存使用,同时保留点云的几何特征和重…...

为什么print语句被Python3遗弃?

在开发和维护python项目的时候发现经常有print语句报错&#xff0c;原因是python3放弃了print语句 print 语句 早就被列在了不可靠的语言特性列表中&#xff0c;例如 Guido 的“Python 之悔”&#xff08;Python Regrets&#xff09;演讲【1】&#xff0c;并计划在 Python 300…...

067、Python 高阶函数的编写:优质冒泡排序

以下写了个简单的冒泡排序函数&#xff1a; def bubble_sort(items: list) -> list:for i in range(1, len(items)):swapped Falsefor j in range(0, len(items) - 1):if items[j] > items[j 1]:items[j], items[j 1] items[j 1], items[j]swapped Trueif not swa…...

【Python】从基础到进阶(一):了解Python语言基础以及变量的相关知识

&#x1f525; 个人主页&#xff1a;空白诗 文章目录 引言一、Python简介1.1 历史背景1.2 设计哲学1.3 语言特性1.4 应用场景1.5 为什么选择Python 二、Python语言基础2.1 注释规则2.1.1 单行注释2.1.2 多行注释2.1.3 文件编码声明注释 2.2 代码缩进2.3 编码规范2.3.1 命名规范…...

AI学习指南机器学习篇-KNN的优缺点

AI学习指南机器学习篇-KNN的优缺点 在机器学习领域中&#xff0c;K最近邻&#xff08;K-Nearest Neighbors&#xff0c;KNN&#xff09;算法是一种十分常见的分类和回归方法之一。它的原理简单易懂&#xff0c;但在实际应用中也存在一些优缺点。本文将重点探讨KNN算法的优缺点…...

全网最全!25届最近5年上海理工大学自动化考研院校分析

上海理工大学 目录 一、学校学院专业简介 二、考试科目指定教材 三、近5年考研分数情况 四、近5年招生录取情况 五、最新一年分数段图表 六、历年真题PDF 七、初试大纲复试大纲 八、学费&奖学金&就业方向 一、学校学院专业简介 二、考试科目指定教材 1、考试…...

LANG、LC_MESSAGES和LC_ALL

在Linux系统中&#xff0c;环境变量LANG、LC_MESSAGES和LC_ALL用于控制系统和应用程序的语言和区域设置&#xff08;locale&#xff09;。它们的具体作用如下&#xff1a; LANG&#xff1a; LANG是最基本的环境变量&#xff0c;用于指定系统的默认语言和区域设置。它是一个全局…...

网站的中英文翻译是怎么做的/推广关键词如何优化

执行如下命令&#xff0c;查询镜像文件的详细信息。ls -lh centos6.9-64bit*qemu-img info centos6.9-64bit.vmdk回显信息如下所示&#xff1a; [rootCentOS7 tmp]# ls -lh centos6.9-64bit*-rw-r--r--. 1 root root 10G Jun 13 05:30 centos6.9-64bit-flat.vmdk-rw-r--r--. 1 …...

做棋牌网站抓到会怎么量刑/朝阳网站建设公司

在前面我们已经完成了ActiveX控件的开发&#xff0c;接下来的就是发布它了。 首先&#xff0c;我们建立一个windows安装项目&#xff0c;并将ActiveX控件的主输出添加到项目输出中。然后&#xff0c;改动ActiveX控件的主输出文件&#xff0c;将其Register属性改为vsdrpCOM.如图…...

网页制作模板的网站代码/如何推广平台

函数模板定义的一般格式为 template <typename 参数化类型名1,....typename 参数化类型名n>函数返回类型 函数名(形式参数列表){函数体}说明&#xff1a; template 和 typename为关键字,<>尖括号内声明所使用的“参数化类型名”。 参数化类型名可以使用任何标识符&…...

创建网站公司 徐州/怎么样推广自己的公司

问题&#xff1a;向正在编辑的Word文档中插入图片时&#xff0c;会发现图片只显示了部分&#xff0c;其余部分被其上面的问题遮挡住 原因&#xff1a;可能是由于设置固定的行间距&#xff0c;导致图片被遮挡 解决方法&#xff1a; 选定插入的图片&#xff0c;在菜单栏中找到 “…...

烟台搭建网站建设制作/怎样做关键词排名优化

现在很多的朋友都应该见过VR全景&#xff0c;但是不知道VR全景具体是什么&#xff1f;是怎么做的&#xff1f;有什么作用&#xff1f;今天小粉就给大家说一下。VR全景是当今最新颖的宣传展示的手段&#xff0c;代表了科技的更进一步&#xff0c;随着5G的发展&#xff0c;VR全景…...

专门做搞笑游戏视频网站/爱站网关键词挖掘查询

前言 Java是目前用户最多、使用范围最广的软件开发技术&#xff0c;Java的技术体系主要由支撑Java程序运行的虚拟机、提供各开发领域接口支持的Java类库、Java编程语言及许许多多的第三E方Java框架(如Spring、 MyBatis等) 构成。在国内&#xff0c;有关Java类库API、Java语言语…...