当前位置: 首页 > news >正文

LeetCode.51N皇后详解

问题描述

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

n 皇后问题是一个经典的回溯算法问题,其目标是在一个 n×n 的棋盘上放置 n 个皇后,使得这些皇后不能相互攻击。这意味着任何两个皇后不能处在同一行、同一列或同一斜线上。这个问题不仅是计算机科学中的一个重要问题,也是数学和人工智能领域的研究对象,涉及到组合数学、图论、算法设计等多个领域。

解题思路

回溯法的应用

n 皇后问题的核心解法是回溯算法,这是一种通过试错来寻找问题解决方法的算法。当它通过尝试可能的分步解决方案后发现当前解决方案不可能成立(即不能满足问题的约束条件),它会取消上一步甚至是几步的计算,再通过其他的可能的分步解决方案继续尝试。

检查冲突

在 n 皇后问题中,核心的挑战是如何有效地检查“攻击”(冲突)情况。这通常涉及以下检查:

  1. 列冲突:确保在同一列不放置多于一个皇后。
  2. 行冲突:通常通过算法的设计(一行只放置一个皇后)自然避免。
  3. 对角线冲突:需要检查两种对角线——从左上到右下和从左下到右上。这可以通过计算线性方程来实现,例如使用对角线的索引差和和来标识每条对角线。

数据结构的选择

使用数组来追踪哪些位置是被攻击状态是解决问题的关键:

  • 列标记:使用一个大小为 n 的数组来标记哪些列已被占用。
  • 对角线标记:使用两个大小为 2n-1 的数组来标记两组对角线的占用情况。对于每个皇后在 (r, c) 的位置,它会占用第 c 列,第 r+c"/" 方向对角线和第 r-c+n-1"\" 方向对角线。

代码示例

class Solution {
public:std::vector<std::vector<std::string>> solveNQueens(int n) {std::vector<std::vector<std::string>> solutions;std::vector<std::string> board(n, std::string(n, '.'));std::vector<int> cols(n, 0), diag1(2 * n - 1, 0), diag2(2 * n - 1, 0);backtrack(solutions, board, cols, diag1, diag2, 0, n);return solutions;}private:void backtrack(std::vector<std::vector<std::string>>& solutions,std::vector<std::string>& board, std::vector<int>& cols,std::vector<int>& diag1, std::vector<int>& diag2, int row,int n) {if (row == n) {solutions.push_back(board);return;}for (int col = 0; col < n; col++) {if (cols[col] || diag1[row + col] || diag2[row - col + n - 1]) {continue;}board[row][col] = 'Q';cols[col] = diag1[row + col] = diag2[row - col + n - 1] = 1;backtrack(solutions, board, cols, diag1, diag2, row + 1, n);board[row][col] = '.';cols[col] = diag1[row + col] = diag2[row - col + n - 1] = 0;}}
};

扩展

组合数学

n 皇后问题是组合数学的一个实例,特别是在它涉及到排列和组合的计算上。每种有效的解决方案实际上是对 n 个数字的一个排列,每个数字代表皇后在特定行的列位置。

复杂度分析

虽然回溯算法在理论上是一种暴力搜索方法,它的时间复杂度在最坏情况下是指数级的,但通过有效的剪枝,实际的运行时间可以大大减少。这种算法通常是用于解决复杂度较高、解空间庞大的问题。

图论的视角

从图论的角度看,n 皇后问题可以被看作是在 n×n 的图中找到一个安全的顶点集合,其中任意两个顶点都不是相互可达的。这种图的特殊构造使其成为图着色问题的一个变种。

相关文章:

LeetCode.51N皇后详解

问题描述 按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上&#xff0c;并且使皇后彼此之间不能相互攻击。 给你一个整数 n &#xff0c;返回所有不同的 n 皇后问题 的解决方案…...

计算机网络之奇偶校验码和CRC冗余校验码

今天我们来看看有关于计算机网络的知识——奇偶校验码和CRC冗余校验码&#xff0c;这两种检测编码的方式相信大家在计算机组成原理当中也有所耳闻&#xff0c;所以今天我就来跟大家分享有关他们的知识。 奇偶校验码 奇偶校验码是通过增加冗余位使得码字中1的个数恒为奇数或偶数…...

二叉树经典OJ练习

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 二叉树经典OJ练习 收录于专栏【数据结构初阶】 本专栏旨在分享学习数据结构学习的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 前置说…...

【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】008 - make distclean 命令解析

【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】008 - make distclean 命令解析 一、make V=1 distclean 命令解析系列文章汇总:《【OpenHarmony4.1 之 U-Boot 源码深度解析】000 - 文章链接汇总》 本文链接:《【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】008 - mak…...

QTreeView双击任意列展开

一.效果 二.原理 重点是如何通过其他列的QModelIndex(假设为index),获取第一列的QModelIndex(假设为firstColumnIndex)。代码如下所示: QModelIndex firstColumnIndex = model->index(index.row(), 0, index.parent()); 这里要注意index函数的第三个参数,第三个参…...

Linux入门攻坚——26、Web Service基础知识与httpd配置-2

http协议 URL&#xff1a;Uniform Resource Locator&#xff0c;统一资源定位符 URL方案&#xff1a;scheme&#xff0c;如http://&#xff0c;https:// 服务器地址&#xff1a;IP&#xff1a;port 资源路径&#xff1a; 示例&#xff1a;http://www.test.com:80/bbs/…...

相由心生与事出反常必有妖

从端午节之日生病起&#xff0c;已就医三次&#xff0c;快半个月了。医检的结论是老病复发—— 上呼吸道感染 。原本并无大碍&#xff0c;加之“水不在深&#xff0c;有龙则灵”的张龙医生处方得当&#xff0c;现已病情好转。只是“800727”趁人之危&#xff0c;兴灾乐祸地欲从…...

微信小程序---支付

一、判断是否登录 如果没有登录&#xff0c;走前端登录流程&#xff0c;不再赘述 二、获取订单编号 跟自己的后端商议入参&#xff0c;然后获取订单编号 三、通过订单编号获取wx.requestPayment()需要的参数 获取订单编号再次请求后端接口&#xff0c;拿到wx.requestPayme…...

Git学习2 -- VSCode中的Git

看了下&#xff0c;主要的插件有3个。自带的Source Control。第1个是Gitlens&#xff0c;第2个是Git Graph。第三个还有个git history。 首先是Source Control。界面大概是这样的。 还是挺直观的。在第一栏source control&#xff0c;可以进行基本的git操作。主要的git操作都是…...

VC++支持断点续下或续传的功能

VC使用多线程和Socket实现断点续下 一、断点续下的基本原理&#xff1a; 1.断点续传的理解可以分为两部分&#xff1a;一部分是断点&#xff0c;一部分是续传。断点的由来是在下载过程中&#xff0c;将一个下载文件分成了多个部分&#xff0c;同时进行多个部分一起的下载&…...

机器学习数学原理专题——线性分类模型:损失函数推导新视角——交叉熵

目录 二、从回归到线性分类模型&#xff1a;分类 3.分类模型损失函数推导——极大似然估计法 &#xff08;1&#xff09;二分类损失函数——极大似然估计 &#xff08;2&#xff09;多分类损失函数——极大似然估计 4.模型损失函数推导新视角——交叉熵 &#xff08;1&#x…...

windows和linux路径斜杆转换脚本,打开即用

前言&#xff1a; windows和linux的目录路径斜杆是相反的&#xff0c;在ssh或者其他什么工具在win和ubuntu传文件时候经常需要用到两边的路径&#xff0c;有这个工具就不用手动去修改斜杆反斜杠了。之前有个在线网站&#xff0c;后来挂了&#xff0c;就想着自己搞一个脚本来用。…...

在Android系统中,查看apk安装路径

在Android系统中&#xff0c;应用通常安装在内部存储的特定目录下。要找到已安装应用的路径&#xff0c;可以通过ADB&#xff08;Android Debug Bridge&#xff09;工具来查询。以下是一些步骤和命令&#xff0c;可以帮助你找到应用的安装路径&#xff1a; 使用pm list package…...

管理不到位,活该执行力差?狠抓这4点要素,强化执行力

管理不到位&#xff0c;活该执行力差&#xff1f;狠抓这4点要素&#xff0c;强化执行力 一&#xff1a;强化制度管理 1、权责分明&#xff0c;追责管理 要知道&#xff0c;规章制度其实就是一种“契约”。 在制定制度和规则的时候&#xff0c;民主一点&#xff0c;征求团队成员…...

应届毕业之本科简历制作

因为毕设以及编制岗位面试&#xff0c;最近好久没有更新了&#xff0c;刚好有同学问如何制作简历&#xff0c;我就准备将我自己制作简历的流程分享给各位&#xff0c;到此也算是一个小的结束&#xff0c;拿了工科学位证书毕业去做&#x1f402;&#x1f40e;了。 简历主要包含内…...

SparkOnHive_列转行、行转列生产操作(透视和逆透视)

前言 行专列&#xff0c;列转行是数开不可避免的一步&#xff0c;尤其是在最初接触Hive的时候&#xff0c;看到什么炸裂函数&#xff0c;各种udf&#xff0c;有点发憷&#xff0c;无从下手&#xff0c;时常产生这t怎么搞&#xff0c;我不会啊&#xff1f; 好吧&#xff…...

【人机交互 复习】第2章 Hadoop

一、概念 1.Hadoop 是一个能够对大量数据进行分布式处理的软件框架&#xff0c;并 且是以一种可靠、高效、可伸缩的方式进行处理的&#xff0c; 2.特点&#xff1a; 高可靠性&#xff0c;高效性&#xff0c;高可扩展性&#xff0c;高容错性 运行在Linux平台上&#xff0c;支持…...

国产自研编程语言“仓颉”来了!

在 6.21 召开的华为开发者大会&#xff08;HDC2024&#xff09;上,华为自研的国产编程语言“仓颉”终于对外正式发布了&#xff01; 随着万物互联以及智能时代的到来&#xff0c;软件的形态将发生巨大的变化。一方面&#xff0c;移动应用和移动互联网领域仍然强力驱动人机交互…...

Swarm 集群管理

Swarm 集群管理 简介 Docker Swarm 是 Docker 的集群管理工具。它将 Docker 主机池转变为单个虚拟 Docker 主机。 Docker Swarm 提供了标准的 Docker API&#xff0c;所有任何已经与 Docker 守护程序通信的工具都可以使用 Swarm 轻松地扩展到多个主机。 支持的工具包括但不限…...

从社交网络到元宇宙:Facebook的战略转型

随着科技的迅猛发展和数字化时代的深入&#xff0c;社交网络已不再局限于简单的信息交流和社交互动&#xff0c;而是逐步向更广阔、更深远的虚拟现实空间——元宇宙&#xff08;Metaverse&#xff09;转变。作为全球最大的社交网络平台之一&#xff0c;Facebook正在积极推动这一…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...