基本循环神经网络(RNN)
RNN背景:RNN与FNN
在前馈神经网络中,信息的传递是单向的,这种限制虽然使得网络变得更容易学习,但在一定程度上也减弱了神经网络模型的能力。
在生物神经网络中,神经元之间的连接关系要复杂的多。前馈神经网络可以看着是一个复杂的函数,每次输入都是独立的,即网络的输出只依赖于当前的输入。
但是在很多现实任务中,网络的输入不仅和当前时刻的输入相关,也和其过去一段时间的输出相关。比如一个有限状态自动机,其下一个时刻的状态(输出)不仅仅和当前输入相关,也和当前状态(上一个时刻的输出)相关。
此外,前馈网络难以处理时序数据,比如视频、语音、文本等。时序数据的长度一般是不固定的,而前馈神经网络要求输入和输出的维数都是固定的,不能任意改变。因此,当处理这一类和时序相关的问题时,就需要一种能力更强的模型。
循环神经网络(Recurrent Neural Network,RNN) 是一类具有短期记忆能力的神经网络。在循环神经网络中,神经元不但可以接受其它神经元的信息,也可以接受自身的信息,形成具有环路的网络结构。和前馈神经网络相比,循环神经网络更加符合生物神经网络的结构。
基本循环神经网络
循环神经网络的基本结构包括输入层、隐藏层和输出层。输入层的输入是序列数据,隐藏层的输出是经过循环神经网络计算得到的结果,输出层的输出是最终的预测结果。RNN模型的循环结构是指隐藏层的输出不仅可以传递给下一时刻的隐藏层,还可以作为输入层的输入。因此,RNN模型可以处理序列数据,并将每个时刻的数据传递给下一个时刻,以便进行长时间的依赖关系分析。
结构:

x是输入向量,o是输出向量,s表示隐藏层的值;U是输入层到隐藏层的权重矩阵,V是隐藏层到输出层的权重矩阵。循环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s-1。权重矩阵W就是隐藏层上一次的值作为这一次的输入的权重。
我们将上图的基本RNN结构在时间维度展开(RNN是一个链式结构,每个时间片使用的是相同的参数):

其中,t 是时刻, x 是输入层, s 是隐藏层, o 是输出层,矩阵 W 就是隐藏层上一次的值作为这一次的输入的权重。
为什么循环神经网络可以往前看任意多个输入值呢?
![]()
![]()
如果反复把式 2 带入到式 1,将得到:

从上面的式子中可以看出:输出受前面历次输入值的影响
训练算法
循环神经网络的训练过程比较复杂,需要更多的计算资源和时间。训练过程通常采用反向传播算法和梯度下降算法。反向传播算法(BPTT)是指通过计算输出层和隐藏层之间的误差,并将误差反向传递给隐藏层和输入层,以便更新网络的权重。梯度下降算法是指通过计算损失函数对权重的梯度,并将梯度下降的方向作为优化方向,以最小化损失函数。
反向传播算法(BPTT)
BPTT算法是针对循环层的训练算法,它的基本原理和BP算法是一样的,也包含同样的三个步骤:
1.前向计算每个神经元的输出值;
2.反向计算每个神经元的误差项δ j 值,它是误差函数E对神经元j的加权输入netj的偏导数;
3.计算每个权重的梯度。
最后再用随机梯度下降算法更新权重。
梯度爆炸和消失问题
- 梯度消失:梯度趋近于零,网络权重无法更新或更新的很微小,网络训练再久也不会有效果;
- 梯度爆炸:梯度呈指数级增长,变的非常大,然后导致网络权重的大幅更新,使网络变得不稳定。
实践中前面介绍的几种RNNs并不能很好的处理较长的序列,RNN在训练中很容易发生梯度爆炸和梯度消失,这导致梯度不能在较长序列中一直传递下去,从而使RNN无法捕捉到长距离的影响。
通常来说,梯度爆炸更容易处理一些。因为梯度爆炸的时候,我们的程序会收到NaN错误。我们也可以设置一个梯度阈值,当梯度超过这个阈值的时候可以直接截取。
梯度消失更难检测,而且也更难处理一些。总的来说,我们有三种方法应对梯度消失问题:
1、合理的初始化权重值。初始化权重,使每个神经元尽可能不要取极大或极小值,以躲开梯度消失的区域。
2、使用relu代替sigmoid和tanh作为激活函数。
3、使用其他结构的RNNs,比如长短时记忆网络(LTSM)和Gated Recurrent Unit(GRU),这是最流行的做法。
参考:
神经网络算法——反向传播 Back Propagation-腾讯云开发者社区-腾讯云 (tencent.com)
循环神经网络——RNN的训练算法:BPTT_rnn bptt-CSDN博客
循环神经网络(RNN)及衍生LSTM、GRU详解 - 凌逆战 - 博客园 (cnblogs.com)
深度学习--前馈神经网络、反馈神经网络_前馈神经网络和反馈神经网络-CSDN博客
相关文章:
基本循环神经网络(RNN)
RNN背景:RNN与FNN 在前馈神经网络中,信息的传递是单向的,这种限制虽然使得网络变得更容易学习,但在一定程度上也减弱了神经网络模型的能力。 在生物神经网络中,神经元之间的连接关系要复杂的多。前馈神经网络可以看着…...
win32API(CONSOLE 相关接口详解)
前言: Windows这个多作业系统除了协调应⽤程序的执⾏、分配内存、管理资源之外,它同时也是⼀个很⼤的服务中⼼,调⽤这个服务中⼼的各种服务(每⼀种服务就是⼀个函数),可以帮应⽤程式达到开启视窗、描绘图形…...
python爬虫学习笔记一(基本概念urllib基础)
学习资料:尚硅谷_爬虫 学习环境: pycharm 一.爬虫基本概念 爬虫定义 > 解释1:通过程序,根据URL进行爬取网页,获取有用信息 > 解释2:使用程序模拟浏览器,向服务器发送请求,获取相应信息…...
MyBatis映射器:一对多关联查询
大家好,我是王有志,一个分享硬核 Java 技术的金融摸鱼侠,欢迎大家加入 Java 人自己的交流群“共同富裕的 Java 人”。 在学习完上一篇文章《MyBatis映射器:一对一关联查询》后,相信你已经掌握了如何在 MyBatis 映射器…...
100多个ChatGPT指令提示词分享
当前,ChatGPT几乎已经占领了整个互联网。全球范围内成千上万的用户正使用这款人工智能驱动的聊天机器人来满足各种需求。然而,并不是每个人都知道如何充分有效地利用ChatGPT的潜力。其实有许多令人惊叹的ChatGPT指令提示词,可以提升您与ChatG…...
vue2和vue3数据代理的区别
前言: vue2 的双向数据绑定是利⽤ES5的⼀个 API ,Object.defineProperty( )对数据进行劫持结合发布订阅模式的方式来实现的。 vue3 中使⽤了 ES6的Proxy代理对象,通过 reactive() 函数给每⼀个对象都包⼀层Proxy,通过 Proxy监听属…...
已解决ApplicationException异常的正确解决方法,亲测有效!!!
已解决ApplicationException异常的正确解决方法,亲测有效!!! 目录 问题分析 出现问题的场景 报错原因 解决思路 解决方法 分析错误日志 检查业务逻辑 验证输入数据 确认服务器端资源的可用性 增加对特殊业务情况的处理…...
「前端+鸿蒙」鸿蒙应用开发-常用UI组件-图片-参数
在鸿蒙应用开发中,图片组件是展示图像的关键UI元素。以下是详细介绍图片组件的三个主要参数:图片尺寸、图片缩放和图片插值,并提供相应的示例代码。 图片尺寸 图片尺寸指的是图片组件在界面上显示的宽度和高度。你可以使用像素(px)或其他单位来指定尺寸。 width: 设置图片…...
Tobii Pro Lab 1.232是全球领先的眼动追踪研究实验软件
Tobii Pro Lab是全球领先的眼动追踪研究实验软件。软件功能强大且拥有友好的用户界面,使眼动追踪研究变得更加简单、高效。该软件提供了很高的灵活性,可运行高级实验,深入了解注意力和认知过程。 获取软件安装包以及永久授权联系邮箱:289535…...
【flink实战】flink-connector-mysql-cdc导致mysql连接器报类型转换错误
文章目录 一. 报错现象二. 方案二:重新编译打包flink-connector-cdc1. 排查脚本2. 重新编译打包flink-sql-connector-mysql-cdc-2.4.0.jar3. 测试flink环境 三. 方案一:改造flink连接器 一. 报错现象 flink sql任务是:mysql到hdfs的离线任务&…...
【Linux】系统文件IO·文件描述符fd
前言 C语言文件接口 C 语言读写文件 1.C语言写入文件 2.C语言读取文件 stdin/stdout/stderr 系统文件IO 文件描述符fd: 文件描述符分配规则: 文件描述符fd: 前言 我们早在C语言中学习关于如何用代码来管理文件,比如文件的…...
【计算机网络篇】数据链路层(6)共享式以太网_网络适配器_MAC地址
文章目录 🍔网络适配器🍔MAC地址🗒️IEEE 802局域网的MAC地址格式📒IEEE 802局域网的MAC地址发送顺序🥚单播MAC地址🥚广播MAC地址🥚多播MAC地址🔎小结 🍔网络适配器 要将…...
导入别人的net文件报红问题sdk
1. 使用cmd命令 dotnet --info 查看自己使用的SDK版本 2.直接找到项目中的 global.json 文件,右键打开,直接修改版本为本机的SDK版本,就可以用了...
LangChain 介绍
In recent times, you would probably have heard of many AI applications, one of them being chatpdf.com. 在最近,你可能听说过很多的AI应用,chatpdf.com就是其中的一个。 On this website, you can upload your own PDF. After uploading, you ca…...
【区分vue2和vue3下的element UI Avatar 头像组件,分别详细介绍属性,事件,方法如何使用,并举例】
在 Vue 2 的 Element UI 和 Vue 3 的 Element Plus 中,Avatar 头像组件可能并没有直接作为官方组件库的一部分。然而,为了回答你的问题,我将假设 Element UI 和 Element Plus 在未来的版本中可能添加了 Avatar 组件,或者我们将使用…...
数据分析必备:一步步教你如何用matplotlib做数据可视化(10)
1、Matplotlib 二维箭头图 箭头图将速度矢量显示为箭头,其中分量(u,v)位于点(x,y)。 quiver(x,y,u,v)上述命令将矢量绘制为在x和y中每个对应元素对中指定的坐标处的箭头。 参数 下表列出了quiver()函数的参数 - x - 1D或2D阵列,…...
Stable Diffusion部署教程,开启你的AI绘图之路
本文环境 系统:Ubuntu 20.04 64位 内存:32G 环境安装 2.1 安装GPU驱动 在英伟达官网根据显卡型号、操作系统、CUDA等查询驱动版本。官网查询链接https://www.nvidia.com/Download/index.aspx?langen-us 注意这里的CUDA版本,如未安装CUD…...
三生随记——诡异的牙线
在小镇的角落,坐落着一间古老的牙医诊所。这所诊所早已荒废多年,窗户上爬满了藤蔓,门板上的油漆斑驳脱落,仿佛诉说着无尽的沉寂与孤独。然而,在午夜时分,偶尔会有低沉的呻吟声从紧闭的诊所里传出࿰…...
批量重命名神器揭秘:一键实现文件夹随机命名,自定义长度轻松搞定!
在数字化时代,我们经常需要管理大量的文件夹,尤其是对于那些需要频繁更改或整理的文件来说,给它们进行批量重命名可以大大提高工作效率。然而,传统的重命名方法既繁琐又耗时,无法满足高效工作的需求。今天,…...
学习笔记——路由网络基础——路由转发
六、路由转发 1、最长匹配原则 最长匹配原则 是支持IP路由的设备默认的路由查找方式(事实上几乎所有支持IP路由的设备都是这种查找方式)。当路由器收到一个IP数据包时,会将数据包的目的IP地址与自己本地路由表中的表项进行逐位(Bit-By-Bit)的逐位查找,…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
在Zenodo下载文件 用到googlecolab googledrive
方法:Figshare/Zenodo上的数据/文件下载不下来?尝试利用Google Colab :https://zhuanlan.zhihu.com/p/1898503078782674027 参考: 通过Colab&谷歌云下载Figshare数据,超级实用!!࿰…...
shell脚本质数判断
shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数)shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数) 思路: 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...
工厂方法模式和抽象工厂方法模式的battle
1.案例直接上手 在这个案例里面,我们会实现这个普通的工厂方法,并且对比这个普通工厂方法和我们直接创建对象的差别在哪里,为什么需要一个工厂: 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类: 两个发…...
