简约的服务器监控工具Ward

什么是 Ward ?
Ward是一个简单简约的服务器监控工具。Ward支持自适应设计系统。此外,它还支持深色主题。它仅显示主要信息,如果您想查看漂亮的仪表板而不是查看一堆数字和图表,则可以使用它。Ward在所有流行的操作系统上都能很好地工作,因为它使用OSHI库。

无论从外表还是功能看,都和老苏之前介绍的 Dashdot 有点像
文章传送门:简单但现代的服务器仪表板Dashdot
安装
在群晖上以 Docker 方式安装。
在注册表中搜索 ward ,选择第一个 antonyleons/ward,版本选择 latest。
本文写作时,
latest版本对应为2.5.1;

权限
需勾选 使用高权限执行容器

端口
本地端口不冲突就行,不确定的话可以用命令查一下
# 查看端口占用
netstat -tunlp | grep 端口号
| 本地端口 | 容器端口 |
|---|---|
4043 | 4000 |

环境
| 可变 | 值 |
|---|---|
WARD_PORT | 侦听端口,缺省值为 4000 |
WARD_THEME | 主题,支持 light 和 dark,设为 dark |

更多的环境变量,请参考官方的文档:https://git.huangdf.xyz/Github/Ward#config
命令行安装
如果你熟悉命令行,可能用 docker cli 更快捷
# 运行容器
docker run -d \--restart always \--privileged \--name ward \-p 4043:3000 \-e WARD_PORT=4000 \-e WARD_THEME=dark \antonyleons/ward
也可以用 docker-compose 安装,将下面的内容保存为 docker-compose.yml 文件
version: '3'services:ward:image: antonyleons/wardcontainer_name: wardprivileged: truerestart: unless-stoppedports:- 4043:4000environment:- WARD_THEME=dark- WARD_PORT=4000
然后执行下面的命令
# 新建文件夹 ward
mkdir -p /volume1/docker/ward# 进入 ward 目录
cd /volume1/docker/ward# 将 docker-compose.yml 放入当前目录# 一键启动
docker-compose up -d
运行
在浏览器中输入 http://群晖IP:4043 就能看到主界面

在手机上访问

参考文档
Github/Ward: Server dashboard - Ward - Gitea: Git with a cup of tea
地址:https://git.huangdf.xyz/Github/Ward
oshi/oshi: Native Operating System and Hardware Information
地址:https://github.com/oshi/oshi
相关文章:
简约的服务器监控工具Ward
什么是 Ward ? Ward 是一个简单简约的服务器监控工具。 Ward 支持自适应设计系统。此外,它还支持深色主题。它仅显示主要信息,如果您想查看漂亮的仪表板而不是查看一堆数字和图表,则可以使用它。 Ward 在所有流行的操作系统上都能…...
新能源发电乙级资质所需办理标准
企业资历与信誉: 必须具有独立企业法人资格。社会信誉良好,注册资本不少于100万元人民币。 技术条件: 专业技术人员配置齐全、合理,数量需满足资质标准要求。主要技术负责人或总工程师应具有大学本科以上学历、10年以上设计经历&a…...
Elasticsearch:使用 Llamaindex 的 RAG 与 Elastic 和 Llama3
这篇文章是对之前的文章 “使用 Llama 3 开源和 Elastic 构建 RAG” 的一个补充。我们可以在本地部署 Elasticsearch,并进行展示。我们将一步一步地来进行配置并展示。你还可以参考我之前的另外一篇文章 “Elasticsearch:使用在本地计算机上运行的 LLM 以…...
AcWing算法基础课笔记——高斯消元
高斯消元 用来求解方程组 a 11 x 1 a 12 x 2 ⋯ a 1 n x n b 1 a 21 x 1 a 22 x 2 ⋯ a 2 n x n b 2 … a n 1 x 1 a n 2 x 2 ⋯ a n n x n b n a_{11} x_1 a_{12} x_2 \dots a_{1n} x_n b_1\\ a_{21} x_1 a_{22} x_2 \dots a_{2n} x_n b_2\\ \dots \\ a…...
【JavaScript脚本宇宙】图形魔术:探索领先的图像处理库及其独特功能
深入了解HTML5视频:最受欢迎的库及其功能 前言 图像处理是现代数字媒体开发中不可或缺的一部分,从调整图像大小到创建复杂的图形场景。有许多库可用,每个库都有其特定的优点和适用场景。在本文中,我们将探讨六种流行的图像处理库…...
Nemotron-4
Nemotron-4是英伟达(NVIDIA)发布的一系列高级人工智能模型,特别着重于大尺度语言模型(LLMs)的发展。这些模型在不同的参数量级上展现出了卓越的性能和效率,其中特别提到了150亿参数的Nemotron-4 15B和3400亿…...
【神经网络】神经元的基本结构和训练过程
🎈个人主页:豌豆射手^ 🎉欢迎 👍点赞✍评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 神经元的基本结构和训练过程 …...
第28课 绘制原理图——绘制导线
概述 放置完元器件之后,接着就要用导线将元器件的管脚一个一个连起来了。 绘制导线的方法 点击快速工具条上的“线”命令,进入绘制导线的过程。 点击选择某个管脚或电源端口,作为导线的起始端。 再点击选择另一个管脚或电源端口,…...
NLP 相关知识
NLP 相关知识 NLPLLMPrompt ChainingLangChain NLP NLP(Natuarl Language Processing)是人工智能的一个分支,中文名自然语言处理,专注于处理和理解人类使用的自然语言。它涵盖了多个子领域,如文本分类、情感分析、机器…...
Java中的设计模式:实战案例分享
Java中的设计模式:实战案例分享 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 设计模式是软件开发中的宝贵工具,它们为常见的问题提供…...
并发编程理论基础——合适的线程数量和安全的局部变量(十)
多线程的提升方向 主要方向在于优化算法和将硬件的性能发挥到极致想要发挥出更多的硬件性能,最主要的就是提升I/O的利用率和CPU的利用率以及综合利用率操作系统已经解决了磁盘和网卡的利用率问题,利用中断机制还能避免 CPU 轮询 I/O 状态,也提…...
Python使用抽象工厂模式和策略模式的组合实现生成指定长度的随机数
设计模式选择理由: 抽象工厂模式: 抽象工厂模式适合于创建一组相关或依赖对象的场景。在这里,我们可以定义一个抽象工厂来创建不同类型(数字、字母、特殊符号)的随机数据生成器。 策略模式: 策略模式允许你…...
python-17-零基础自学python-
学习内容:《python编程:从入门到实践》第二版 知识点: 类、子类、继承、调用函数 练习内容: 练习9-6:冰激凌小店 冰激凌小店是一种特殊的餐馆。编写一个名为IceCreamStand的类,让它继承为完成练习9-1或…...
Web应用和Tomcat的集成鉴权1-BasicAuthentication
作者:私语茶馆 1.Web应用与Tomcat的集成式鉴权 Web应用部署在Tomcat时,一般有三层鉴权: (1)操作系统鉴权 (2)Tomcat容器层鉴权 (3)应用层鉴权 操作系统层鉴权包括但不限于:Tomcat可以和Windows的域鉴权集成,这个适合企业级的统一管理。也可以在Tomcat和应用层独立…...
解决Linux下Java应用因内存不足而崩溃的问题
在Linux系统中运行内存密集型的Java应用时,经常会遇到因系统内存不足而导致应用崩溃的问题。本文将探讨如何诊断这类问题以及提供有效的解决方案。 问题诊断 首先,使用 free -h 命令查看系统的内存使用情况,得到以下输出: total…...
ardupilot开发 --- 视觉伺服 篇
风驰电掣云端飘,相机无法对上焦 1.视觉伺服分类2.视觉伺服中的坐标系3.成像模型推导4.IBVS理论推导5.IBVS面临的挑战6.visp 实践参考文献 1.视觉伺服分类 控制量是在图像空间中推导得到还是在欧式空间中推导得到,视觉伺服又可以分类为基于位置(PBVS)和基…...
KVM配置嵌套虚拟化
按照以下步骤启用、配置和开始使用嵌套虚拟化,默认情况下禁用该功能,要启用它,请在宿主机物理机上进行配置。在centos stream 9和ubuntu 22部署kvm默认支持虚拟机嵌套虚拟化。 1、英特尔 1.1检查嵌套虚拟化在您的主机系统上是否可用 $cat /sys/module/kvm_intel/paramete…...
Springboot应用的信创适配-补充
Springboot应用的信创适配-CSDN博客 因为篇幅限制,这里补全Spring信创适配、数据库信创适配、Redis信创适配、消息队列信创适配等四个章节。 Springboot应用的信创适配 Springboot应用的信创适配,如上图所示需要适配的很多,从硬件、操作系统、…...
制图工具(14)导出图层字段属性信息表
在制图工具(13)地理数据库初始化工具中我们提到,有一个参数为:“输入Excel表”,并要求表格中的图层字段属性项需要按工具的帮助文档中的示例进行组织… 如下图: 此外,总有那个一个特别的需求&am…...
代码随想录——买股票的最佳时机Ⅱ(Leecode122)
添加链接描述 贪心 局部最优:手机每天的正利润 全局最优:求最大利润 class Solution {public int maxProfit(int[] prices) {int res 0;for(int i 1; i < prices.length; i){res Math.max(prices[i] - prices[i - 1], 0);}return res;} }...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
