当前位置: 首页 > news >正文

diffusion model(十八):diffusion model中negative prompt的工作机制

info
个人博客主页http://myhz0606.com/article/ncsn

前置阅读:

DDPM: http://myhz0606.com/article/ddpm

classifier-guided:http://myhz0606.com/article/guided

classifier-free guided:http://myhz0606.com/article/classifier_free

Score based generative model:http://myhz0606.com/article/ncsn

引言

在用Stable Diffusion生成图片时,除了输入图片表述文本外(positive prompt),我们还经常会使用negative prompt作为condition来让模型避免生成negative prompt所表述的概念。查阅源码发现stable diffusion中negative prompt的实现机制是将classifier-free guided中 ϵ θ ( x t , y = ∅ , t ) \epsilon_{\theta}(x_t, y=\empty, t) ϵθ(xt,y=,t)替换为 ϵ θ ( x t , y ~ , t ) \epsilon_{\theta}(x_t, \tilde{y}, t) ϵθ(xt,y~,t),( y ~ \tilde{y} y~表示negative prompt)。即:

原生classifier-free guided每一个timestep的噪声估计如下:

ϵ ^ θ ( x t , y , t ) = ϵ θ ( x t , y = ∅ , t ) + s [ ϵ θ ( x t , y , t ) − ϵ θ ( x t , y = ∅ , t ) ] \begin{align} \hat{\epsilon}_{\theta}(x_t, y, t)=\epsilon_{\theta}(x_t, y=\empty,t) + s[\epsilon_{\theta}(x_t, y, t) - \epsilon_{\theta}(x_t, y=\empty, t) ]\tag{1} \end{align} ϵ^θ(xt,y,t)=ϵθ(xt,y=,t)+s[ϵθ(xt,y,t)ϵθ(xt,y=,t)](1)

当有negative prompt condition时,将上式改为

ϵ ^ θ ( x t , y , t ) = ϵ θ ( x t , y ~ , t ) + s [ ϵ θ ( x t , y , t ) − ϵ θ ( x t , y ~ , t ) ] \begin{align} \hat{\epsilon}_{\theta}(x_t, y, t)=\epsilon_{\theta}(x_t, \tilde{y},t) + s[\epsilon_{\theta}(x_t, y, t) - \epsilon_{\theta}(x_t, \tilde{y}, t) ]\tag{2} \end{align} ϵ^θ(xt,y,t)=ϵθ(xt,y~,t)+s[ϵθ(xt,y,t)ϵθ(xt,y~,t)](2)

源码位置位于(diffuser版本v0.29.1): https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L427

那么为什么negative prompt能够work呢?

How do negative prompt take effect

为了引出相关推导,先快速回顾一下classifier-guided和classifier-free的motivation。

为了做条件生成(即从条件分布 p ( x ∣ y ) p(x|y) p(xy)中采样样本),我们可以根据贝叶斯公式进行如下推导:

p ( x ∣ y ) = p ( y ∣ x ) p ( x ) p ( y ) log ⁡ p ( x ∣ y ) = log ⁡ p ( y ∣ x ) + log ⁡ p ( x ) − log ⁡ p ( y ) ⇒ ∇ x log ⁡ p ( x ∣ y ) = ∇ x log ⁡ p ( y ∣ x ) + ∇ x log ⁡ p ( x ) − ∇ x log ⁡ p ( y ) ⏟ = 0 ⇒ ∇ x log ⁡ p ( x ∣ y ) = ∇ x log ⁡ p ( y ∣ x ) + ∇ x log ⁡ p ( x ) (3) \begin{aligned} p(\mathrm{x}|y) &= \frac{p(y|\mathrm{x})p(\mathrm{x})}{p(y)} \\ \log p(\mathrm{x}|y) &= \log p(y|\mathrm{x}) + \log p(\mathrm{x}) - \log p(y) \\ \Rightarrow \nabla_{\mathrm{x}} \log p(\mathrm{x}|y) &= \nabla_{\mathrm{x}} \log p(y|\mathrm{x}) + \nabla_{\mathrm{x}} \log p(\mathrm{x}) - \underbrace{ \nabla_{\mathrm{x}} \log p(y) }_{=0} \\ \Rightarrow \nabla_{\mathrm{x}} \log p(\mathrm{x}|y) &= \nabla_{\mathrm{x}} \log p(y|\mathrm{x}) + \nabla_{\mathrm{x}} \log p(\mathrm{x}) \end{aligned} \tag{3} p(xy)logp(xy)xlogp(xy)xlogp(xy)=p(y)p(yx)p(x)=logp(yx)+logp(x)logp(y)=xlogp(yx)+xlogp(x)=0 xlogp(y)=xlogp(yx)+xlogp(x)(3)

在classifier-guided任务中,我们已知无条件输入的score based model能够估计出 ∇ x log ⁡ p ( x ) \nabla_{\mathrm{x}} \log p(\mathrm{x}) xlogp(x) ,因此,为了得到 ∇ x log ⁡ p ( y ∣ x ) \nabla_{\mathrm{x}} \log p(y|\mathrm{x}) xlogp(yx) ,我们只需额外训练一个分类器来估计 ∇ x log ⁡ p ( y ∣ x ) \nabla_{\mathrm{x}} \log p(y|\mathrm{x}) xlogp(yx)即可。为了控制condition的强度,引入一个guidance scale s s s

∇ x log ⁡ p ( x ∣ y ) : = s ∇ x log ⁡ p ( y ∣ x ) + ∇ x log ⁡ p ( x ) (4) \nabla_{\mathrm{x}} \log p(\mathrm{x}|y) := s \nabla_{\mathrm{x}} \log p(y|\mathrm{x}) + \nabla_{\mathrm{x}} \log p(\mathrm{x}) \tag{4} xlogp(xy):=sxlogp(yx)+xlogp(x)(4)

对于classifier-free任务中,通过随机drop标签,我们同时训练 ∇ x log ⁡ p ( x ) \nabla_{\mathrm{x}} \log p(\mathrm{x}) xlogp(x) ∇ x log ⁡ p ( x ∣ y ) \nabla_{\mathrm{x}} \log p(\mathrm{x}|y) xlogp(xy) 两个score based model。虽然我们可以通过 ∇ x log ⁡ p ( x ∣ y ) \nabla_{\mathrm{x}} \log p(\mathrm{x}|y) xlogp(xy) 直接进行条件生成,但为了控制生成时条件的强度,沿用了公式(4) guidance scale的概念。并且 ∇ x log ⁡ p ( y ∣ x ) = ∇ x log ⁡ p ( x ∣ y ) − ∇ x log ⁡ p ( x ) \nabla_{\mathrm{x}} \log p(y|\mathrm{x}) = \nabla_{\mathrm{x}} \log p(\mathrm{x}|y) - \nabla_{\mathrm{x}} \log p(\mathrm{x}) xlogp(yx)=xlogp(xy)xlogp(x) ,故有:

∇ x log ⁡ p ( x ∣ y ) : = s ( ∇ x log ⁡ p ( x ∣ y ) − ∇ x log ⁡ p ( x ) ) + ∇ x log ⁡ p ( x ) (5) \nabla_{\mathrm{x}} \log p(\mathrm{x}|y) := s (\nabla_{\mathrm{x}} \log p(\mathrm{x}|y) - \nabla_{\mathrm{x}} \log p(\mathrm{x}) ) + \nabla_{\mathrm{x}} \log p(\mathrm{x}) \tag{5} xlogp(xy):=s(xlogp(xy)xlogp(x))+xlogp(x)(5)

stable diffusion代码路径:https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L1019

当有negative prompt作为condition时,此时的condition为两项,一项是 y y y: positive prompt condition,另一项为 n o t y ~ \mathrm{not} \, \tilde{y} noty~:negative prompt condition。

只要得到 ∇ x log ⁡ p ( x ∣ y , n o t y ~ ) \nabla_{\mathrm{x}} \log p(\mathrm{x}|y, \mathrm{not} \, \tilde{y}) xlogp(xy,noty~)我们就可以参考之前的采样算法生成样本。重新直接训练一个score based model来估计 ∇ x log ⁡ p ( x ∣ y , n o t y ~ ) \nabla_{\mathrm{x}} \log p(\mathrm{x}|y, \mathrm{not} \, \tilde{y}) xlogp(xy,noty~)当然可行,但成本巨大。下面来看如何进行简化[1,2]

p ( x ∣ y , n o t y ~ ) = p ( x , y , n o t y ~ ) p ( y , n o t y ~ ) = p ( y , n o t y ~ ∣ x ) p ( x ) p ( y , n o t y ~ ) = 在 x 条件下 y 与 n o t y ~ 独立 p ( y ∣ x ) p ( n o t y ~ ∣ x ) p ( x ) p ( y , n o t y ~ ) ∝ p ( x ) p ( y , n o t y ~ ) p ( y ∣ x ) p ( y ~ ∣ x ) ⇒ ∇ x log ⁡ p ( x ∣ y , n o t y ~ ) ∝ ∇ x log ⁡ p ( x ) + ∇ x log ⁡ p ( y ∣ x ) − ∇ x log ⁡ p ( y ~ ∣ x ) (6) \begin{aligned} p(\mathrm{x}|y, \mathrm{not}\, \tilde{y} ) & = \frac{p(\mathrm{x},y, \mathrm{not}\, \tilde{y})}{p(y, \mathrm{not}\, \tilde{y})} \\ &= \frac{p(y, \mathrm{not}\, \tilde{y}|\mathrm{x})p(\mathrm{x})}{p(y, \mathrm{not}\, \tilde{y})} \\ & \stackrel{在x条件下y与\mathrm{not} \, \tilde{y}独立}= \frac{p(y|\mathrm{x})p(\mathrm{not}\, \tilde{y}|\mathrm{x})p(\mathrm{x})}{p(y,\mathrm{not}\, \tilde{y})} \\ & \propto \frac{p(\mathrm{x})}{{p(y,\mathrm{not}\, \tilde{y})}} \frac{p(y|\mathrm{x})}{p(\tilde{y}|\mathrm{x})} \\ \Rightarrow \nabla_{\mathrm{x}} \log p(\mathrm{x}|y, \mathrm{not}\, \tilde{y} ) & \propto \nabla_{\mathrm{x}} \log p(\mathrm{x}) + \nabla_{\mathrm{x}} \log p(y|\mathrm{x}) - \nabla_{\mathrm{x}} \log {p(\tilde{y}|\mathrm{x})} \end{aligned} \tag{6} p(xy,noty~)xlogp(xy,noty~)=p(y,noty~)p(x,y,noty~)=p(y,noty~)p(y,noty~x)p(x)=x条件下ynoty~独立p(y,noty~)p(yx)p(noty~x)p(x)p(y,noty~)p(x)p(y~x)p(yx)xlogp(x)+xlogp(yx)xlogp(y~x)(6)

由于:

∇ x log ⁡ p ( y ∣ x ) = ∇ x log ⁡ p ( x ∣ y ) − ∇ x log ⁡ p ( x ) ∇ x log ⁡ p ( y ~ ∣ x ) = ∇ x log ⁡ p ( x ∣ y ~ ) − ∇ x log ⁡ p ( x ) (7) \begin{aligned}\nabla_{x} \log p(y|\mathrm{x}) = \nabla_{x} \log p(\mathrm{x}|y) - \nabla_{\mathrm{x}} \log p(\mathrm{x}) \\ \nabla_{\mathrm{x}} \log p(\tilde{y}|\mathrm{x}) = \nabla_{x} \log p(\mathrm{x}|\tilde{y}) - \nabla_{\mathrm{x}} \log p(\mathrm{x}) \end{aligned} \tag{7} xlogp(yx)=xlogp(xy)xlogp(x)xlogp(y~x)=xlogp(xy~)xlogp(x)(7)

s + s^{+} s+为positive prompt condition的guidance scale, s − s^{-} s为negative prompt的guidance scale,有

∇ x log ⁡ p ( x ∣ y , n o t y ~ ) : = ∇ x log ⁡ p ( x ) + s + ( ∇ x log ⁡ p ( x ∣ y ) − ∇ x log ⁡ p ( x ) ) − s − ( ∇ x log ⁡ p ( x ∣ y ~ ) − ∇ x log ⁡ p ( x ) ) (8) \nabla_{\mathrm{x}} \log p(\mathrm{x}|y, \mathrm{not}\, \tilde{y} ) := \nabla_{\mathrm{x}} \log p(\mathrm{x}) + s^{+}(\nabla_{x} \log p(\mathrm{x}|y) - \nabla_{\mathrm{x}} \log p(\mathrm{x})) - s^{-} (\nabla_{x} \log p(\mathrm{x}|\tilde{y}) - \nabla_{\mathrm{x}} \log p(\mathrm{x})) \tag{8} xlogp(xy,noty~):=xlogp(x)+s+(xlogp(xy)xlogp(x))s(xlogp(xy~)xlogp(x))(8)

通过式(8)可以得出,我们只需计算 ∇ x log ⁡ p ( x ) \nabla_{\mathrm{x}} \log p(\mathrm{x}) xlogp(x) ∇ x log ⁡ p ( x ∣ y ) \nabla_{x} \log p(\mathrm{x}|y) xlogp(xy) ∇ x log ⁡ p ( x ∣ y ~ ) \nabla_{x} \log p(\mathrm{x}|\tilde{y}) xlogp(xy~)三项即可估计出 ∇ x log ⁡ p ( x ∣ y , n o t y ~ ) \nabla_{\mathrm{x}} \log p(\mathrm{x}|y, \mathrm{not}\, \tilde{y} ) xlogp(xy,noty~)

1 − s + + s − = 0 1 - s^{+} + s^{-} = 0 1s++s=0时, s − = s + − 1 s^{-} = s^{+} - 1 s=s+1

∇ x log ⁡ p ( x ∣ y , n o t y ~ ) = s + ∇ x log ⁡ p ( x ∣ y ) − ( s + − 1 ) ∇ x log ⁡ p ( x ∣ y ~ ) = ∇ x log ⁡ p ( x ∣ y ~ ) + s + ( ∇ x log ⁡ p ( x ∣ y ) − ∇ x log ⁡ p ( x ∣ y ~ ) ) (9) \begin{aligned} \nabla_{\mathrm{x}} \log p(\mathrm{x}|y, \mathrm{not}\, \tilde{y} ) &= s^{+}\nabla_{x} \log p(\mathrm{x}|y) - (s^{+} - 1)\nabla_{x} \log p(\mathrm{x}|\tilde{y}) \\ & = \nabla_{x} \log p(\mathrm{x}|\tilde{y}) + s^{+}(\nabla_{x} \log p(\mathrm{x}|y) - \nabla_{x} \log p(\mathrm{x}|\tilde{y})) \end{aligned} \tag{9} xlogp(xy,noty~)=s+xlogp(xy)(s+1)xlogp(xy~)=xlogp(xy~)+s+(xlogp(xy)xlogp(xy~))(9)

式(9) 就是stable diffusion源码中实现形式

源码位置位于(diffuser版本v0.29.1): https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L427

文献[3]通过“Neutralization Hypothesis”,“Reverse Activation”解释negative prompt conditioning的工作机制,感兴趣的同学可以后续阅读。

When do negative prompt take effect

定性分析

上文我们通过理论推导证明了negative prompt conditioning的可行性。本节将从可视化的角度分析negative prompt conditioning是如何影响图片生成的。主要文献参考[3]

类似Prompt-to-prompt[4]的研究思路,我们可以绘制不同时间步token-wise attention map热力图。从图中发现,negative prompt作用存在一定延迟。positive prompt conditioning在生成的早期(t=0-3)时就关注到对应的区域,而negative prompt conditioning直到t=8-11才能正确关注到对应的区域。

在这里插入图片描述

定量分析

进一步的,为了定量的描述上述机制,文献[3]定义了 r t r_t rt为negative prompt conditioning的强度

r t = Σ k ∥ F k , p − ( i ) ( t ) ∥ F Σ k ∥ F k , p + ( r ( i ) ) ( t ) ∥ F (10) r _ { t } = \frac { \Sigma _ { k } \| F _ { k , p _ { - } ( i ) } ^ { ( t ) } \| _ { F } } { \Sigma _ { k } \| F _ { k , p _ { + } ( r ( i ) ) } ^ { ( t ) } \| _ { F } } \tag{10} rt=ΣkFk,p+(r(i))(t)FΣkFk,p(i)(t)F(10)

假设:Positive prompt: Pofessional office woman. Negative prompt: Glasses

p _ p_{\_} p_: 表示negative prompt

p + p_{+} p+: 表示positive prompt

p _ ( i ) p_{\_ }(i) p_(i):表示negative prompt第 i i i个索引处的token

p + ( r ( i ) ) p_{+}(r(i)) p+(r(i)):表示positive prompt p + p_{+} p+中与 p _ ( i ) p_{\_ }(i) p_(i)最相关的token。 p _ ( i ) p_{\_ }(i) p_(i)=”Glasses”, 那么 p + ( r ( i ) ) p_{+}(r(i)) p+(r(i))=“woman”。

F k , p _ ( i ) t F_{k, p_{\_ (i)}}^{t} Fk,p_(i)t: 在时间步为t时,在第k层cross-attention处token p _ ( i ) p_{\_ }(i) p_(i)对应的attention map。

F k , p + ( r ( i ) ) t F_{k, p_{+}(r(i))}^{t} Fk,p+(r(i))t: 在时间步为t时,在第k层cross-attention处token p + ( r ( i ) ) p_{+}(r(i)) p+(r(i))对应的attention map。

r t r_t rt越小时,说明negative prompt conditioning的强度越小,反之越大。

选择了10对相应的提示对,10个不同的随机种子上进行实验,并绘制 ( r t , t ) (r_t, t) (rt,t)曲线如下:

在这里插入图片描述

从上图不难得出:

  • negative prompt conditioning的强度初始较弱,在时间步为5-10时达到峰值。
  • 当negative prompt 为名词时, r t r_t rt呈先增强后降低趋势,这是由于当negative prompt作用后,会移除生成图片中的对应实体,从而让token-wise attention map的响应变弱。
  • 当negative prompt 为形容词时, r t r_t rt呈先增强后稳定。

即然negative prompt conditioning存在滞后性,可以在初始阶段(t=0-5)不引入negative prompt conditioning,之后在引入,这能起到类似局部编辑的效果。

在这里插入图片描述

小结

本文相对系统探讨了diffusion model中negative prompt conditioning的工作机理,解释了stable diffusion关于negative prompt conditioning源码实现的合理性(式9),并给出了更一般的形式(式8)。

参考文献

[1] Compositional Visual Generation with Energy Based Models

[2] Compositional Visual Generation with Composable Diffusion Models

[3]Understanding the Impact of Negative Prompts: When and How Do They Take Effect?

[4]http://myhz0606.com/article/p2p

相关文章:

diffusion model(十八):diffusion model中negative prompt的工作机制

info个人博客主页http://myhz0606.com/article/ncsn 前置阅读: DDPM: http://myhz0606.com/article/ddpm classifier-guided:http://myhz0606.com/article/guided classifier-free guided:http://myhz0606.com/article/classi…...

Python | Leetcode Python题解之第200题岛屿数量

题目&#xff1a; 题解&#xff1a; class Solution:def dfs(self, grid, r, c):grid[r][c] 0nr, nc len(grid), len(grid[0])for x, y in [(r - 1, c), (r 1, c), (r, c - 1), (r, c 1)]:if 0 < x < nr and 0 < y < nc and grid[x][y] "1":self.d…...

利用圆上两点和圆半径求解圆心坐标

已知圆上两点P1&#xff0c;P2&#xff0c;坐标依次为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1​,y1​),(x2​,y2​)&#xff0c;圆的半径为 r r r&#xff0c;求圆心的坐标。 假定P1&#xff0c;P2为任意两点&#xff0c;则两点连成线段的中点坐标是 x m i …...

从ChatGPT代码执行逃逸到LLMs应用安全思考

摘要 11月7日OpenAI发布会后&#xff0c;GPT-4的最新更新为用户带来了更加便捷的功能&#xff0c;包括Python代码解释器、网络内容浏览和图像生成能力。这些创新不仅开辟了人工智能应用的新境界&#xff0c;也展示了GPT-4在处理复杂任务方面的惊人能力。然而&#xff0c;与所有…...

Python入门-基础知识-变量

1.标识符与关键字 Python语言规定&#xff0c;标识符由字母、数字和下画线组成&#xff0c;且不允许以数字开头。合法的标识符可以 是student_1、 addNumber、num等&#xff0c;而3number、2_student等是不合法的标识符。在使用标识符时应注意以下几点。 (1)命名时应遵循见名知…...

设计模式原则——接口隔离原则

设计模式原则 设计模式示例代码库地址&#xff1a; https://gitee.com/Jasonpupil/designPatterns 接口隔离原则 要求程序员尽量将臃肿庞大的接口拆分为更小的和更具体的接口&#xff0c;让接口中只包含客户感兴趣的方法接口隔离原则的目标是降低类或模块之间的耦合度&…...

MySQL数据库——在Centos7环境安装

MySQL在Centos7环境安装 1.切换root用户 安装与卸载中&#xff0c;用户全部切换成为root&#xff0c;安装好后&#xff0c;普通用户也能使用 2.卸载不要的环境 要将自己环境中有关mysql的全都删除&#xff0c;避免安装过程中被影响 ps axj | grep mariadb 先检查是否有mari…...

怎样规避液氮容器内部结霜的问题

液氮容器内部结霜问题一直是我们在使用液氮储存罐时遇到的一个棘手难题。液氮的极低温度使得容器内部很容易产生结霜现象&#xff0c;这不仅影响了容器的正常使用&#xff0c;还可能对内部样品或设备造成损坏。因此&#xff0c;如何有效规避液氮容器内部结霜问题成为了每个使用…...

冶金工业5G智能工厂工业物联数字孪生平台,推进制造业数字化转型

冶金工业5G智能工厂工业物联数字孪生平台&#xff0c;推进制造业数字化转型。传统生产方式难以满足现代冶金工业的发展需求&#xff0c;数字化转型成为必然趋势。通过引入5G、工业物联网和数字孪生等先进技术&#xff0c;冶金工业可以实现生产过程智能化、高效化和绿色化&#…...

一文入门机器学习参数调整实操

作者前言: 通过向身边的同事大佬请教之后&#xff0c;大佬指点我把本文的宗旨从“参数调优”改成了“参数调整”。实在惭愧&#xff0c;暂时还没到能“调优”的水平&#xff0c;本文只能通过实操演示“哪些操作会对数据训练产生影响”&#xff0c;后续加深学习之后&#xff0c;…...

基于51单片机的银行排队呼叫系统设计

一.硬件方案 本系统是以排队抽号顺序为核心&#xff0c;客户利用客户端抽号&#xff0c;工作人员利用叫号端叫号&#xff1b;通过显示器及时显示当前所叫号数&#xff0c;客户及时了解排队信息&#xff0c;通过合理的程序结构来执行排队抽号。电路主要由51单片机最小系统LCD12…...

JXCategoryView的使用总结

一、初始化 -(JXCategoryTitleView *)categoryView{if (!_categoryView) {_categoryView [[JXCategoryTitleView alloc] init];_categoryView.delegate self;_categoryView.titleDataSource self;_categoryView.averageCellSpacingEnabled NO; //是否平均分配项目之间的间…...

Centos9 安装VBox增强功能问题

安装步骤 更新gcc 首先手动更新gcc&#xff0c;防止无法兼容最新版本的内核&#xff0c;我这里将gcc 11更新到gcc 13 1.首先更新当前gcc和支持 yum install -y gcc gcc-c 2.下载新版本gcc压缩包 wget http://ftp.gnu.org/gnu/gcc/gcc-13.1.0/gcc-13.1.0.tar.gz 解压到usr ta…...

【JVM】Java虚拟机运行时数据分区介绍

JVM 分区&#xff08;运行时数据区域&#xff09; 文章目录 JVM 分区&#xff08;运行时数据区域&#xff09;前言1. 程序计数器2. Java 虚拟机栈3. 本地方法栈4. Java 堆5. 方法区6. 运行时常量池7. 直接内存 前言 之前在说多线程的时候&#xff0c;提到了JVM虚拟机的分区内存…...

大数据面试题之Kafka(2)

目录 Kafka的工作原理? Kafka怎么保证数据不丢失&#xff0c;不重复? Kafka分区策略 Kafka如何尽可能保证数据可靠性? Kafka数据丢失怎么处理? Kafka如何保证全局有序? 生产者消费者模式与发布订阅模式有何异同? Kafka的消费者组是如何消费数据的 Kafka的…...

前端面试题(基础篇十一)

一、DOCTYPE 的作用是什么&#xff1f; <!DOCTYPE> 声明一般位于文档的第一行&#xff0c;它的作用主要是告诉浏览器以什么样的模式来解析文档。一般指定了之后会以标准模式来进行文档解析&#xff0c;否则就以兼容模式进行解析。在标准模式下&#xff0c;浏览器的解析规…...

【论文阅读】Answering Label-Constrained Reachability Queries via Reduction Techniques

Cai Y, Zheng W. Answering Label-Constrained Reachability Queries via Reduction Techniques[C]//International Conference on Database Systems for Advanced Applications. Cham: Springer Nature Switzerland, 2023: 114-131. Abstract 许多真实世界的图都包含边缘标签…...

Git Flow 工作流学习要点

Git Flow 工作流学习要点 Git Flow — 流程图Git Flow — 操作指令优点&#xff1a;缺点&#xff1a;Git Flow 分支类型Git Flow 工作流程简述关于 feature 分支关于 Release 分支关于 hotfix 分支 总结 Git Flow — 流程图 图片来源&#xff1a;https://nvie.com/posts/a-succ…...

blender 快捷键 常见问题

一、快捷键 平移视图&#xff1a;Shift 鼠标中键旋转视图&#xff1a;鼠标中键缩放视图&#xff1a;鼠标滚动框选放大模型&#xff1a;Shift B线框预览和材质预览切换&#xff1a;Shift Z 二、常见问题 问题&#xff1a;导入模型成功&#xff0c;但是场景中看不到。 解…...

HTTP详解:TCP三次握手和四次挥手

一、TCP协议概述 TCP协议是互联网协议栈中传输层的核心协议之一&#xff0c;它提供了一种可靠的数据传输方式&#xff0c;确保数据包按顺序到达&#xff0c;并且没有丢失或重复。TCP的主要特点包括&#xff1a; 面向连接&#xff1a;TCP在传输数据之前需要建立连接。可靠传输&…...

详解HTTP:有了HTTP,为何需要WebSocket?

在日常生活中&#xff0c;HTTP 常用于请求数据。例如&#xff0c;当你打开一个天气预报网站时&#xff0c;浏览器会发送一个 HTTP 请求到服务器&#xff0c;请求当前的天气数据&#xff0c;服务器返回响应&#xff0c;浏览器解析并显示这些数据。 但是&#xff0c;当涉及到需要…...

Spring Boot 启动流程是怎么样的

引言 SpringBoot是一个广泛使用的Java框架&#xff0c;旨在简化基于Spring框架的应用程序的开发过程。在这篇文章中&#xff0c;我们将深入探讨SpringBoot应用程序的启动流程&#xff0c;了解其背后的机制。 Spring Boot 启动概览 SpringBoot应用程序的启动通常从一个包含 m…...

【学习笔记】数据结构(三)

栈和队列 文章目录 栈和队列3.1 栈 - Stack3.1.1 抽象数据类型栈的定义3.1.2 栈的表示和实现 3.2 栈的应用举例3.2.1 数制转换3.2.2 括号匹配的检验3.2.3 迷宫求解3.2.4 表达式求值 - 波兰、逆波兰3.2.5 反转一个字符串或者反转一个链表 3.3 栈与递归的实现3.4 队列 - Queue3.4…...

学习python笔记:10,requests,enumerate,numpy.array

requests库&#xff0c;用于发送 HTTP 请求的 Python 库。 requests 是一个用于发送 HTTP 请求的 Python 库。它使得发送 HTTP 请求变得简单且人性化。以下是一些基本的 requests 函数及其用途&#xff1a; requests.get(url, **kwargs) 发送一个 GET 请求到指定的 URL。 i…...

经典神经网络(13)GPT-1、GPT-2原理及nanoGPT源码分析(GPT-2)

经典神经网络(13)GPT-1、GPT-2原理及nanoGPT源码分析(GPT-2) 2022 年 11 月&#xff0c;ChatGPT 成功面世&#xff0c;成为历史上用户增长最快的消费者应用。与 Google、FaceBook等公司不同&#xff0c;OpenAI 从初代模型 GPT-1 开始&#xff0c;始终贯彻只有解码器&#xff0…...

MySQL库与表的操作

目录 一、登录并进入数据库 1、登录 2、USE 命令 检查当前数据库 二、库的操作 1、创建数据库语法 2、举例演示 3、退出 三、字符集和校对规则 1、字符集&#xff08;Character Set&#xff09; 2、校对集&#xff08;Collation&#xff09; 总结 3、操作命令 …...

TTS 语音合成技术学习

TTS 语音合成技术 TTS&#xff08;Text-to-Speech&#xff0c;文字转语音&#xff09;技术是一种能够将文字内容转换为自然语音的技术。通过 TTS&#xff0c;机器可以“说话”&#xff0c;这大大增强了人与机器之间的互动能力。无论是在语音助手、导航系统还是电子书朗读器中&…...

小公司做自动化的困境

1. 人员数量不够 非常常见的场景, 开发没几个, 凭什么测试要那么多, 假设这里面有3个测试, 是不是得有1个人会搞框架? 是不是得有2人搞功能测试, 一个人又搞框架, 有些脚本, 真来得及吗? 2. 人员基础不够 现在有的大公司, 是这样子协作的, 也就是某模块需求谁谁测试的, 那么…...

基于pytorch框架的手写数字识别(保姆级教学)

1、前言 本文基于PyTorch框架,采用CNN卷积神经网络实现MNIST手写数字识别,不仅可以在GPU上,同时也可以在CPU上运行。方便即使只有CPU的小伙伴也可以运行该模型。本博客手把手教学,如何手写网络层(3层),以及模型训练,详细介绍各参数含义与用途。 2、模型源码解读 该模型…...

注意力机制在大语言模型中的应用

在大语言模型中&#xff0c;注意力机制&#xff08;Attention Mechanism&#xff09;用于捕获输入序列中不同标记&#xff08;token&#xff09;之间的关系和依赖性。这种机制可以动态地调整每个标记对当前处理任务的重要性&#xff0c;从而提高模型的性能。具体来说&#xff0…...

技术支持 东莞网站建设电脑回收/天津百度seo排名优化

内容安全策略&#xff08;CSP&#xff09;是一个增加的安全层&#xff0c;可帮助检测和缓解某些类型的攻击&#xff0c;包括跨站点脚本&#xff08;XSS&#xff09;和数据注入攻击。这些攻击用于从数据窃取到站点破坏或恶意软件分发的所有内容&#xff08;深入CSP&#xff09; …...

网站开发类的合同/青岛seo外包公司

linux 系统监控、诊断工具之 top 详解 2016年04月15日 16:57:01 lovely可爱欧辰 阅读数&#xff1a;1304更多 个人分类&#xff1a; UNIX系统命令接触 linux 的人对于 top 命令可能不会陌生&#xff08;不同系统名字可能不一样&#xff0c;如 IBM 的 aix 中叫 topas &#xff0…...

终身免费网站建设/网络营销的营销理念

切片 概述 切片是程序员对数组对象的抽象&#xff0c;在Go里面&#xff0c;数组长度是不可变的&#xff0c;这样会造成我们使用集合的时候比较笨重&#xff0c;只有在固定的场所才可以使用。 Go提供了一种较为灵活的数组&#xff0c;我们可以理解为动态数组&#xff0c;他对比…...

网站后台管理页面下载/dy刷粉网站推广马上刷

春暖花开&#xff0c;被疫情偷走的三年在今年开学季找补回来了。多个数据反馈&#xff0c;居民消费意愿大幅提升。在淘特上&#xff0c;开工开学节点就很是明显&#xff1a;1月30日以来&#xff0c;淘特箱包品类甚至远超2022年双11&#xff0c;成为开年“第一爆品”。与此同时&…...

网站跳出率/app推广是做什么的

SNV下载历史版本的某个文件 目的&#xff1a;从SVN上下载历史版本&#xff0c;不是整个工程的某个历史版本&#xff0c;而是某个文件的历史版本。 首先找到想要下载的文件右键Show log&#xff0c;找到想要的某个版本点击右键选择save resivion to 这样就保存了想要的&#…...

镇江建站/巩义网络推广公司

重新换回wamp3.1.3开发环境&#xff0c;发现不能切换版本&#xff0c;主要原因是不能添加php到环境变量里面&#xff0c;具体问题见这篇博客&#xff1a; https://blog.csdn.net/hu_feng903/article/details/81259834 但是去掉了php环境变量&#xff0c;composer这些要怎么用…...