当前位置: 首页 > news >正文

从赛题切入谈如何学习数学建模

1.引言

(1)今天学习了这个汪教授的这个视频,主要是对于一个赛题的介绍讲解,带领我们通过这个赛题知道数学建模应该学习哪些技能,以及这个相关的经验,我感觉这个还是让我自己受益匪浅的

(2)下面的这个就是一个关于葡萄酒的问题,2012年的国赛A题,这个我当时还在上小学一年级,哈哈哈~~,一起来学习一下吧;

(3)这个题目确实是比较抽象的,因为这个葡萄和葡萄酒的各种指标很多,而且这个评酒员的数量也是很多的,第一次可能感觉是无从下手的,这个里面还是用到了这个和概率论相关的知识,这个能力也是我不具备的,因为我自己目前只是学习了高等数学,了解一点这个线性代数,但是这个概率论我是真的一点也不懂了,看来还是要学的,不然这个题可能真的不好做,但是我觉得我们大概率不会选择到A题的,因为这个我们自己的知识储备还是不够的,慢慢了解吧;

2.介绍

(1)这个一共是有4个问题后面也世界去了一部分的这个数据和图标,不是很全面,知识进行一个初步的了解;

(2)这几个问题之间肯定是相互联系的,不可以分裂的看,就像我们在初中写的这个压轴题一样,这个题目直接写就会比较难,但是这个出题人会多设置几个小问,引导我们进行思考,这个数学建模也是一样的道理,我们也不能单拎出来某一个进行分析,而是要具有这个全局观念,第一问就是让我们去比较这个评酒员的评价的可信度,第二问是让我们根据这个理化指标对于这个酿酒的葡萄进行这个等级的划分,因为这个好酒就是要使用这个好的葡萄进行这个酿制的过程,这个好的葡萄的价格肯定是要更贵的,第34问就是让我们去根据这个理化指标判断这个葡萄酒的好坏,判断这个的可行性,为什么要这样做,就是因为这个额我们不想使用评酒员,我们想要达到的效果就是根据这个理化指标直接判断出来这个酒的好坏,省去用评酒员的这个步骤,即使是在现在的生活里面,我们的这个工厂也是想要达到这个效果的,因为这个省去了大量的人力物力和财力,这个数学建模就是服务于我们的这个实际生活的;

(3)从这个附件一我们就可以看出来这个,对于一个葡萄酒,是一共有10个评酒员对于这个酒的质量进行评价的,但是每一个评酒员还要从不同的角度对于这个酒进行评价,例如上面显示的这个外观,香味和这个口感;

(4)上面的这个就是理化指标,包含这个葡萄的理化指标:各种化学物质的含量,以及这个酒的理化指标:也是物质的含量,醛酮酸酯等等这些吧,这个下面也是给出来这个这个评酒员评价的酒的理化指标,这个样的话,问题就已经很清楚了,就是我们先去对比这个评酒员的评价,选出来可信度比较高的,我们综合这些可信度比较高的酒的评价,看看他们之间的理化指标有没有相同的特性,这个特性我们就可以进一步去验证是否可以作为好葡萄酒的判断标准;

3.分析过程

(1)第一问的这个对于评酒员评价结果的比较差异,判断哪一个会更加可信,这个下面的就是平月的一个参考标准,但是这个上面的很多的知识都是我没有学过的,方差统计,各种检验的方法我都是不清楚的,但是我知道什么是方差,方差小表示的就是这组数据稳定,知道这个就可以大致理解这个题目,但是对于这个进一步的方程求解就需要概率论的知识了,我还是需要继续学习的;

(2)就目前的知识水平而言,这个问题我们无法进行精确地求解,但是有些东西我们是可以确定的,例如这个不同的评酒员对于这个同一个酒的评价的方差很小,就可以说明这个评价的可信度比较高,但是这个只是回答了一半,因为我们不仅要看相同的酒在不同的评酒员的评价,还要看这个同一个评酒员对于不同的酒的评价,这个如果越大,说明这个酒的等级质量的划分就是越明显的,如果一个评酒员对于这个不同的酒的评价几乎是一样的,那么这个差距就没有拉开,这个评价的参考意义也是不大的;因此我们对于这个第一问的求解,应该综合考虑这两个方面;

(3)第二问就是对于这个葡萄进行这个等级的划分,把这个葡萄酒的质量和葡萄的理化指标放在一起进行分析,划分等级,这个相关理化指标之间的相关性不可以太强,否则会影响我们的综合评价,我们可以选择建立这个理化指标和葡萄酒的质量的回归方程,划分出来这个等级,多少个等级可以我们人为地进行确定;

(4)第三问就是建立葡萄和葡萄酒之间的理化指标的联系,可以使用这个下面的

相关性分析,灰色关联等等方法,这些方法我都不了解,就不展开介绍了,这个赛题可以让我们清楚我们参加这个数学建模比赛需要具备哪些能力,方便我们下去进行相应的准备;

(5)是否可以使用这个理化指标直接对这个质量进行评价,使用的方法就是主成分分析法;老师特别强调不可以使用这个神经网络,这个我了解一点,之前在这个python和人工智能这个专栏里面也是浅浅的介绍过一些的,这个就是把这个数据集划分为训练集和测试集,这个训练集是用来得出这个数据之间的关联性的,这个测试集就是用来进行这个相关性的测试,如果符合的话,我们就可以说这个训练集得到的结果是可靠的;但是这个前提是具有足够多的数据,这个题目里面的葡萄的种类和葡萄酒的种类是有限的,不满足这个神经网络的使用的条件,所以这个里面不推荐使用;

4.经验

(1)最后汪教授给出了我们这些入门者相关的比赛经验,就是把所学的方法,模型填充到下面的分类列表里面去,这个方法,这个模型属于哪一种建模方法大类,我们平常就应该总结,其中这个分类判别就是属于机器学习里面的;

 

(2)机理分析就是微分方程的求解,之前的那个包汤圆的问题就是机理分析法;

(3)相关分析,判别分析,聚类分析,这个就是解决这个题目需要使用的方法,也是我们需要具备的能力,需要我们去进行准备;

(4)数学建模这个东西需要以赛代练,但是前提我们还是要有一些相应的知识的储备的,理解不同的模型的使用的场景,这个前提就是我们接触大量的模型和题目,丰富我们的这个数学建模的方法,所以大家加油吧~~~

相关文章:

从赛题切入谈如何学习数学建模

1.引言 (1)今天学习了这个汪教授的这个视频,主要是对于一个赛题的介绍讲解,带领我们通过这个赛题知道数学建模应该学习哪些技能,以及这个相关的经验,我感觉这个还是让我自己受益匪浅的 (2&…...

江山欧派杯2024全国华佗五禽戏线上线下观摩交流比赛在亳州开幕

6月28日,2024全国华佗五禽戏线上线下观摩交流比赛在安徽省亳州市开幕。 此次比赛是由安徽省亳州市文化旅游体育局和安徽省非物质文化遗产保护中心主办、亳州市华佗五禽戏协会(国家级非遗华佗五禽戏保护单位)和亳州市传统华佗五禽戏俱乐部&…...

怪兽充电一季度由盈转亏:营收大幅下滑,消费者投诉不断

《港湾商业观察》施子夫 日常生活中,关于移动充电宝“乱扣费”、“充电功率低”的吐槽之声不绝于耳。而原先风靡一时的共享充电宝也被不少网友吐槽为“充电刺客”,足以可见共享充电宝虽作为大众使用频率较高的移动电源产品,但负面评价声音同…...

激光与相机融合标定汇总:提升融合算法的精度与可靠性(附github地址)

前言 随着科技的飞速发展,激光技术与相机技术的融合已成为推动智能化影像发展的重要力量。这种融合不仅提高了成像的精度和效率,还为相关行业带来了革命性的变革。在这篇博客中,我们将深入探讨激光与相机融合标定的原理及其在各个领域的应用…...

市场拓展招聘:完整指南

扩大招聘业务会给你带来很多挑战,更不用说你已经在处理的问题了。助教专业人士每周花近13个小时为一个角色寻找候选人。此外,客户的需求也在不断变化,招聘机构之间的竞争也在加剧。毫无疑问,对增长有战略的方法会有很大的帮助。一…...

Leetcode 501:二叉搜索树中的众数

给你一个含重复值的二叉搜索树(BST)的根节点 root ,找出并返回 BST 中的所有 众数(即,出现频率最高的元素)。 如果树中有不止一个众数,可以按 任意顺序 返回。 假定 BST 满足如下定义&#xf…...

esp8266 GPIO

功能综述 ESP8266 的 16 个通⽤ IO 的管脚位置和名称如下表所示。 管脚功能选择 功能选择寄存器 PERIPHS_IO_MUX_MTDI_U(不同的 GPIO,该寄存器不同) PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U,FUNC_GPIO12);PERIPHS_IO_MUX_为前缀。后面的…...

ingress相关yaml文件报错且相关资源一切正常解决方法

今天在执行ingress相关文件的时候莫名其妙报错了,问了别人得知了这个方法 执行ingress相关文件报错 01.yaml是我自己创建关于ingress的yaml文件 报错信息 且相关资源一切正常 解决方法 kubectl get validatingwebhookconfigurations删除ingress-nginx-admissio…...

重要通知:据最新TEMU要求所有欧区车灯都需要能效标签(eu energy lable)

重要通知: 据最新TEMU要求,所有“欧区车灯”都需要能效标签(eu energy lable),目前已下架欧区站点,上传成功后可恢复。 灯具类欧盟EU ENERGY LABEL 近日有不少欧洲站卖家收到TEMU平台商品要求卖家们发布的…...

JAVA SDK 整合 AI 大语言模型

目前主流模型厂商的 SDK 并没有很好的支持 JAVA 环境,主流还是使用的 Python ,如果希望将 AI 功能集成到业务中来,则需要找找有没有一些现成的开源项目,但是这种项目一般需要谨慎使用,以防有偷取 app_key 等风险问题 前…...

【Apache Doris】如何实现高并发点查?(原理+实践全析)

【Apache Doris】如何实现高并发点查?(原理实践全析) 一、背景说明二、原理介绍三、环境信息四、Jmeter初始化五、参数预调六、用例准备七、高并发实测八、影响因素九、总结 本文主要分享 Apache Doris 是如何实现高并发点查的,以…...

解决SpringMVC使用MyBatis-Plus自定义MyBaits拦截器不生效的问题

自定义MyBatis拦截器 如果是SpringBoot项目引入Component注解就生效了,但是SpringMVC不行 import lombok.extern.slf4j.Slf4j; import org.apache.ibatis.executor.parameter.ParameterHandler; import org.apache.ibatis.executor.statement.StatementHandler; i…...

Swagger与RESTful API

1. Swagger简介 在现代软件开发中,RESTful API已成为应用程序间通信的一个标准。这种架构风格通过使用标准的HTTP方法来执行网络上的操作,简化了不同系统之间的交互。API(应用程序编程接口)允许不同的软件系统以一种预定义的方式…...

MySQL84 -- ERROR 1524 (HY000): Plugin ‘msql_native_password‘ is not loaded.

【问题描述】 MySQL 8.4版本,配置用户使用mysql_native_password认证插件验证用户身份,报错: 【解决方法】(Windows, MySQL 8.4) 1、修改MySQL配置文件my.ini,在[mysqld]段添加mysql_native_passwordON。 2、管理员…...

将Excel中的错误值#N/A替换成心仪的字符串,瞬间爱了……

常用表格的人都晓得,看到满屏悦动的#N/A,心情都会不好。把它替换成自己心仪的字符,瞬间就爱了。 (笔记模板由python脚本于2024年06月13日 19:32:37创建,本篇笔记适合常用Excel,喜欢数据的coder翻阅) 【学习的细节是欢悦…...

AI大模型日报#0628:谷歌开源9B 27B版Gemma2、AI首次实时生成视频、讯飞星火4.0发布

导读:AI大模型日报,爬虫LLM自动生成,一文览尽每日AI大模型要点资讯!目前采用“文心一言”(ERNIE-4.0-8K-latest)生成了今日要点以及每条资讯的摘要。欢迎阅读!《AI大模型日报》今日要点&#xf…...

【随笔】提高代码学习水平(以更高的视角看事物)

最近,我感觉到自己的代码水平似乎卡在了一个瓶颈。似乎只想着数仓,Hive,Spark技术优化,但只要稍微离开这几个点,我就感到无所适从。我开始反思,或许,我应该总结一下自己的学习方法。 1.站的高&…...

游戏AI的创造思路-技术基础-深度学习(5)

继续深度学习技术的探讨,填坑不断,头秃不断~~~~~ 目录 3.5. 自编码器(AE) 3.5.1. 定义 3.5.2. 形成过程 3.5.3. 运行原理 3.5.3.1.运行原理及基本框架 3.5.3.2. 示例代码 3.5.4. 优缺点 3.5.5. 存在的问题和解决方法 3.5…...

基于SpringBoot养老院管理系统设计和实现(源码+LW+调试文档+讲解等)

💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟感兴趣的可以先收藏起来,还…...

餐饮点餐的简单MySQL集合

ER图 模型图(没有进行排序,混乱) DDL和DML /* Navicat MySQL Data TransferSource Server : Mylink Source Server Version : 50726 Source Host : localhost:3306 Source Database : schooldbTarget Server Type …...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...