#### grpc比http性能高的原因 ####
grpc比http性能高的原因
二进制消息格式:gRPC使用Protobuf(一种有效的二进制消息格式)进行序列化,这种格式在服务器和客户端上的序列化速度非常快,且序列化后的消息体积小,适合带宽有限的场景。
HTTP/2协议:gRPC是为HTTP/2设计的,HTTP/2协议在发送和接收方面都是紧凑且高效的,支持多路复用,即在单个TCP连接上可以复用多个HTTP/2调用,消除了应用程序层的队头阻塞问题。
流控制和双向通信:gRPC支持双向流控制机制,允许客户端和服务器之间进行实时的双向通信,这对于需要实时数据交互的应用非常有利。
为什么protobuf比较高效
概括:
即:序列化后数据体积小(压缩率高)、序列化和反序列化速度快。
与XML、JSON这类文本协议相比,ProtoBuf通过T-L-V(TAG-LENGTH-VALUE)方式编码,不需要", {, }, :等分隔符来结构化信息。同时在编码层面使用varint压缩,所以描述同样的信息,protobuf序列化后的体积要小很多,在网络中传输消耗的网络流量更少。
详细:
(1)压缩率高
protobuf基于接口描述语言IDL(Interface Description Language)实现消息结构的定义,传输数据的两端都需要定义该消息结构,并保存在.proto文件中,这样就不需要在消息数据中定义结构信息,自然就把空间压榨到极限了。例如:
package my;
message helloworld
{
required int32 id = 1;
required string str = 2;
optional int32 wow = 3;
}
除此之外,每个消息项前面有对应的tag,才能解析对应的数据类型,类似于计算机网络中传输IP数据包也需要分隔符来标识一样。对于protobuf,tag的大小是一个字节,即八位,tag的计算方式: tag = (field_number << 3) | wire_type,其中,上面定义的1,2,3可以类比json中的key。field_number是.proto文件用于定义某个字段,比如对于上述消息结构,id是1,str是2,wow是3,wire_type是google官方定义的,它是消息结构类型的一种再次分类,每个wire_type都可以对应多种数据类型,每种数据类型都有对应的wire_type:可以观察到,protobuf支持的wire_type 范围是0~5,对应二进制也就是000~101,正好是三位,那么按照tag计算公式,field_number左移三位之后,再或上wire_type就组成了tag。这样就总共是六位,放在一个字节中,表示tag,就可以标识该字段的结构信息。因此在判断wire_type类型的时候,只需要取后三位。
(2)解析快
(a)Varint编码:
在说varint之前,我们回顾一下,传输int需要四字节,但如果这个数用不到四字节,那么会导致浪费,例如对于整数267,二进制表示是00000000 00000000 00000001 00001011,前两个字节就是浪费的。
varint是一种特殊的编码,例如下图是两个字节(这两个字节其实对于varint编码来说,表示267,why?我们后面就见分晓):
第一个字节最高是1,表示下一个字节也是其想表述的数据的组成部分。反之,0则表示下一个字节与当前字节没有关系。
这样的话,其实上面16位里,只有14位是有实际数据意义的,从左到右先放高位,那么就是0000010 0001011,连一起就是00000100001011,正好就是前面我们的例子267的二进制表示
那么,varint编码有什么问题吗?
如果想表示-1,二进制是11111111 11111111 11111111 11111111 ,用varint编码效率很低。
(b)Zigzag编码:
Zigzag编码规则如下:
如果数据是负数,那么套用2*|x|-1来编码表示
如果数据是正数,那么套用2*|x| 来编码表示
那么对于-1,就编成1,再二进制表示,就是00000001
上面的编码都是基于数字编码,那么如果传输字符串,就显得不太方便。
(c)TLV(Tag-Length-Value):
这不是一种编码格式,而是一种传输规则,对于传输字符串,Tag还是起到分隔符的作用,Length表示字符串的长度,Value表示字符的具体值,不进行编码。
相关文章:
#### grpc比http性能高的原因 ####
grpc比http性能高的原因 二进制消息格式:gRPC使用Protobuf(一种有效的二进制消息格式)进行序列化,这种格式在服务器和客户端上的序列化速度非常快,且序列化后的消息体积小,适合带宽有限的场景。 HTTP/2协…...
微软Edge浏览器搜索引擎切换全攻略
微软Edge浏览器作为Windows 10的默认浏览器,提供了丰富的功能和良好的用户体验。其中,搜索引擎的切换功能允许用户根据个人喜好和需求,快速更换搜索引擎,从而获得更加个性化的搜索服务。本文将详细介绍如何在Edge浏览器中进行搜索…...
<Linux> 实现命名管道多进程任务派发
实现命名管道多进程任务派发 common文件 #ifndef _COMMON_H_ #define _COMMON_H_#pragma once #include <iostream> #include <unistd.h> #include <string> #include <sys/types.h> #include <sys/stat.h> #include <wait.h> #include &…...

BigInteger 和 BigDecimal(java)
文章目录 BigInteger(大整数)常用构造方法常用方法 BigDecimal(大浮点数)常用构造方法常用方法 DecimalFormat(数字格式化) BigInteger(大整数) java.math.BigInteger。 父类:Number 常用构造方法 构造方法:BigIntege…...
Linux 进程间通讯
Linux IPC 方式 在Linux系统中,进程间通信(IPC)是多个运行中的程序或进程之间交换数据和信息的关键机制。Linux提供了多种IPC机制,每种机制都有其特定的用途和优势。以下是Linux上主要的IPC通信方式: 管道(…...

数据分析三剑客-Matplotlib
数据分析三剑客 数据分析三剑客通常指的是在Python数据分析领域中,三个非常重要的工具和库:Pandas、NumPy和Matplotlib。Pandas主要负责数据处理和分析,NumPy专注于数值计算和数学运算,而Matplotlib则负责数据可视化。这三个库相…...
FastAPI-Body、Field
参考:模式的额外信息 - 例子 - FastAPI 在FastAPI中,Body和Field是两个常用的注解,它们用于定义请求体中的数据或路径参数、查询参数等的处理方式。这两个注解都来自于Pydantic库,用于数据验证和解析,但它们的应用场景…...

软件设计师笔记-操作系统知识(二)
线程 以下是关于线程的一些关键点: 线程是进程中的一个实体:进程是操作系统分配资源(如内存空间、文件句柄等)的基本单位,而线程是进程中的一个执行单元。多个线程可以共享同一个进程的地址空间和其他资源。线程是CP…...

鸿蒙UI开发快速入门 —— part12: 渲染控制
如果你对鸿蒙开发感兴趣,加入Harmony自习室吧~👇🏻👇🏻👇🏻👇🏻 扫描下面的二维码关注公众号。 1、前言 在声明式描述语句中开发者除了使用系统组件外,还可…...

添加用户页面(Flask+前端+MySQL整合)
首先导入Flask库和pymysql库。Flask用于创建Web应用程序,pymysql用于连接和操作MySQL数据库。 from flask import Flask, render_template, request import pymysql创建一个Flask应用实例。__name__参数告诉Flask使用当前模块作为应用的名称。 app Flask(__name_…...
素数筛(算法篇)
算法之素数筛 素数筛 引言: 素数(质数):除了1和自己本身之外,没有任何因子的数叫做素数(质数) 朴素筛法(优化版) 概念: 朴素筛法:是直接暴力枚举2到当前判断的数x(不包括),然后看在这范围内是否存在因…...
迁移Microsoft Edge
如何将Microsoft Edge迁移到d盘?对于Microsoft Edge想必大部分人都不陌生,它是Windows操作系统的默认浏览器,存储用户的个人数据、缓存和设置等信息。有些时候,我们需要对Microsoft Edge中的数据进行数据迁移,以释放c盘…...

Maven高级理解属性
属性 在这一章节内容中,我们将学习两个内容,分别是 属性版本管理 属性中会继续解决分模块开发项目存在的问题,版本管理主要是认识下当前主流的版本定义方式。 4.1 属性 4.1.1 问题分析 讲解内容之前,我们还是先来分析问题: …...

Trilium Notes浏览器插件保存网页内容到docker私有化部署
利用Trilium浏览器插件可以很方便的把网页内容保存到Trilium,需要先在docker部署好trilium,还没有部署的可以先看这篇文章:trilium笔记私有化部署-www.88531.cn资享网 1.下载Trilium浏览器插件:https://www.npspro.cn/33462.html…...
C++ 统计二进制串中0出现的个数
描述 一个32位有符号整数,使用二进制来表示,现在要统计一下二进制串中0的个数。 示例1 输入: 11 返回值: 29 说明: 二进制00000000000000000000000000001011中有29位0 class Solution { public:/*** 代码中的…...
note-网络是怎样连接的6 请求到达服务器,响应返回浏览器
助记提要 服务器程序的结构套接字的指代方式MAC模块的接收过程IP模块的接收过程TCP模块处理连接包TCP模块处理数据包TCP模块的断开操作URI转换为实际文件路径URI调用程序Web服务器访问控制响应内容的类型 6章 请求到达服务器,响应返回浏览器 1 服务器概览 在数据…...
存储过程与函数:封装数据库逻辑的艺术(七)
引言 在上一章《事务处理》中,我们深入探讨了事务的ACID特性以及如何通过事务控制语句和隔离级别来确保数据的一致性和完整性。本章,我们将把焦点转向存储过程与函数,这是数据库系统中用于封装复杂业务逻辑和增强代码复用性的强大工具。通过…...

【复旦邱锡鹏教授《神经网络与深度学习公开课》笔记】卷积
卷积经常用在信号处理中,用于计算信号的延迟累积。假设一个信号发射器每个时刻 t t t产生一个信号 x t x_t xt,其信息的衰减率为 w k w_k wk,即在 k − 1 k-1 k−1个时间步长后,信息为原来的 w k w_k wk倍,时刻 …...
Trie字符串统计
Trie字符串统计 维护一个字符串集合,支持两种操作: I x 向集合中插入一个字符串 x;Q x 询问一个字符串在集合中出现了多少次。 共有 N个操作,所有输入的字符串总长度不超过 105,字符串仅包含小写英文字母。 输入格式…...
Kali Linux源
中科大 deb http://mirrors.ustc.edu.cn/kali kali-rolling main non-free contrib deb-src http://mirrors.ustc.edu.cn/kali kali-rolling main non-free contrib阿里云 deb http://mirrors.aliyun.com/kali kali-rolling main non-free contrib deb-src http://mirrors.…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...