当前位置: 首页 > news >正文

T4打卡 学习笔记

所用环境

● 语言环境:Python3.11
● 编译器:jupyter notebook
● 深度学习框架:TensorFlow2.16.1
● 显卡(GPU):NVIDIA GeForce RTX 2070

设置GPU

from tensorflow import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")gpus
[]

导入数据

data_dir = r"C:\Users\11054\Desktop\kLearning\p4_learning\data"data_dir = pathlib.Path(data_dir)

查看数据

image_count = len(list(data_dir.glob('*/*.jpg')))print("图片总数为:",image_count)
图片总数为: 2142
Monkeypox = list(data_dir.glob('Monkeypox/*.jpg'))
PIL.Image.open(str(Monkeypox[0]))

在这里插入图片描述

batch_size = 32
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 2142 files belonging to 2 classes.
Using 1714 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 2142 files belonging to 2 classes.
Using 428 files for validation.
class_names = train_ds.class_names
print(class_names)
['Monkeypox', 'Others']
plt.figure(figsize=(20, 10))for images, labels in train_ds.take(1):for i in range(20):ax = plt.subplot(5, 10, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

在这里插入图片描述

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(32, 224, 224, 3)
(32,)

配置数据集

# def mean_std_normalize(image):
#     return image  / 255
#
# train_ds = train_ds.map(lambda x, y: (mean_std_normalize(x), y))
# val_ds = val_ds.map(lambda x, y: (mean_std_normalize(x), y))
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

构建CNN网络

num_classes = 2"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
在上一篇文章花朵识别中,训练准确率与验证准确率相差巨大就是由于模型过拟合导致的关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""model = models.Sequential([layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样layers.Dropout(0.4),layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3layers.Dropout(0.3),layers.Flatten(),                       # Flatten层,连接卷积层与全连接层layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取layers.Dense(num_classes)               # 输出层,输出预期结果
])model.summary()  # 打印网络结构
Model: "sequential_13"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ rescaling_2 (Rescaling)              │ (None, 224, 224, 3)         │               0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_39 (Conv2D)                   │ (None, 222, 222, 16)        │             448 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ average_pooling2d_26                 │ (None, 111, 111, 16)        │               0 │
│ (AveragePooling2D)                   │                             │                 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_40 (Conv2D)                   │ (None, 109, 109, 32)        │           4,640 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ average_pooling2d_27                 │ (None, 54, 54, 32)          │               0 │
│ (AveragePooling2D)                   │                             │                 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_26 (Dropout)                 │ (None, 54, 54, 32)          │               0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_41 (Conv2D)                   │ (None, 52, 52, 64)          │          18,496 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_27 (Dropout)                 │ (None, 52, 52, 64)          │               0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ flatten_13 (Flatten)                 │ (None, 173056)              │               0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_26 (Dense)                     │ (None, 128)                 │      22,151,296 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_27 (Dense)                     │ (None, 2)                   │             258 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
 Total params: 22,175,138 (84.59 MB)
 Trainable params: 22,175,138 (84.59 MB)
 Non-trainable params: 0 (0.00 B)

编译

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-4)model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

训练模型


from tensorflow.keras.callbacks import ModelCheckpointepochs = 50checkpoint = ModelCheckpoint(filepath='best_model.weights.h5',  # Change to .weights.h5save_weights_only=True,monitor='val_loss',mode='min',save_best_only=True
)history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,callbacks=[checkpoint])
Epoch 1/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m16s[0m 257ms/step - accuracy: 0.5094 - loss: 0.7558 - val_accuracy: 0.5350 - val_loss: 0.6751
Epoch 2/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 262ms/step - accuracy: 0.5925 - loss: 0.6632 - val_accuracy: 0.6005 - val_loss: 0.6564
Epoch 3/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 255ms/step - accuracy: 0.6289 - loss: 0.6556 - val_accuracy: 0.6308 - val_loss: 0.6436
Epoch 4/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m15s[0m 279ms/step - accuracy: 0.6565 - loss: 0.6333 - val_accuracy: 0.6402 - val_loss: 0.6487
Epoch 5/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 251ms/step - accuracy: 0.6738 - loss: 0.6020 - val_accuracy: 0.6963 - val_loss: 0.5978
Epoch 6/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 253ms/step - accuracy: 0.6961 - loss: 0.5812 - val_accuracy: 0.6659 - val_loss: 0.6477
Epoch 7/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 243ms/step - accuracy: 0.7291 - loss: 0.5505 - val_accuracy: 0.6752 - val_loss: 0.6096
Epoch 8/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 248ms/step - accuracy: 0.7211 - loss: 0.5350 - val_accuracy: 0.7196 - val_loss: 0.5285
Epoch 9/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 247ms/step - accuracy: 0.7731 - loss: 0.4832 - val_accuracy: 0.7243 - val_loss: 0.5279
Epoch 10/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 250ms/step - accuracy: 0.7680 - loss: 0.4829 - val_accuracy: 0.7383 - val_loss: 0.4957
Epoch 11/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 240ms/step - accuracy: 0.7907 - loss: 0.4464 - val_accuracy: 0.7336 - val_loss: 0.4979
Epoch 12/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 246ms/step - accuracy: 0.8025 - loss: 0.4156 - val_accuracy: 0.7500 - val_loss: 0.4833
Epoch 13/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m10s[0m 175ms/step - accuracy: 0.8184 - loss: 0.4268 - val_accuracy: 0.7944 - val_loss: 0.4716
Epoch 14/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m7s[0m 128ms/step - accuracy: 0.8452 - loss: 0.3810 - val_accuracy: 0.7991 - val_loss: 0.4530
Epoch 15/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m7s[0m 127ms/step - accuracy: 0.8464 - loss: 0.3660 - val_accuracy: 0.7827 - val_loss: 0.4764
Epoch 16/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m10s[0m 181ms/step - accuracy: 0.8320 - loss: 0.3806 - val_accuracy: 0.7967 - val_loss: 0.4451
Epoch 17/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 255ms/step - accuracy: 0.8550 - loss: 0.3492 - val_accuracy: 0.7897 - val_loss: 0.4656
Epoch 18/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 250ms/step - accuracy: 0.8770 - loss: 0.3161 - val_accuracy: 0.7477 - val_loss: 0.4867
Epoch 19/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 268ms/step - accuracy: 0.8535 - loss: 0.3309 - val_accuracy: 0.8154 - val_loss: 0.4552
Epoch 20/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 266ms/step - accuracy: 0.8941 - loss: 0.2848 - val_accuracy: 0.7967 - val_loss: 0.4495
Epoch 21/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 256ms/step - accuracy: 0.8743 - loss: 0.2957 - val_accuracy: 0.8131 - val_loss: 0.4250
Epoch 22/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 245ms/step - accuracy: 0.8794 - loss: 0.2941 - val_accuracy: 0.8201 - val_loss: 0.4460
Epoch 23/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 252ms/step - accuracy: 0.8551 - loss: 0.3300 - val_accuracy: 0.8294 - val_loss: 0.4210
Epoch 24/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 251ms/step - accuracy: 0.8998 - loss: 0.2713 - val_accuracy: 0.8131 - val_loss: 0.4808
Epoch 25/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 246ms/step - accuracy: 0.8802 - loss: 0.2752 - val_accuracy: 0.7897 - val_loss: 0.5133
Epoch 26/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 253ms/step - accuracy: 0.8714 - loss: 0.2991 - val_accuracy: 0.8481 - val_loss: 0.4189
Epoch 27/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 248ms/step - accuracy: 0.9051 - loss: 0.2461 - val_accuracy: 0.8435 - val_loss: 0.4028
Epoch 28/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 242ms/step - accuracy: 0.8978 - loss: 0.2519 - val_accuracy: 0.8411 - val_loss: 0.4060
Epoch 29/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 242ms/step - accuracy: 0.9127 - loss: 0.2319 - val_accuracy: 0.8294 - val_loss: 0.4254
Epoch 30/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 246ms/step - accuracy: 0.9162 - loss: 0.2175 - val_accuracy: 0.8575 - val_loss: 0.4212
Epoch 31/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 255ms/step - accuracy: 0.9306 - loss: 0.1994 - val_accuracy: 0.8435 - val_loss: 0.4504
Epoch 32/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 246ms/step - accuracy: 0.9094 - loss: 0.2175 - val_accuracy: 0.8294 - val_loss: 0.4103
Epoch 33/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 252ms/step - accuracy: 0.9161 - loss: 0.1994 - val_accuracy: 0.8481 - val_loss: 0.3999
Epoch 34/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 249ms/step - accuracy: 0.9201 - loss: 0.1888 - val_accuracy: 0.8341 - val_loss: 0.4599
Epoch 35/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 250ms/step - accuracy: 0.9113 - loss: 0.2096 - val_accuracy: 0.8178 - val_loss: 0.4632
Epoch 36/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 251ms/step - accuracy: 0.9378 - loss: 0.1745 - val_accuracy: 0.8551 - val_loss: 0.4268
Epoch 37/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 255ms/step - accuracy: 0.9438 - loss: 0.1538 - val_accuracy: 0.8575 - val_loss: 0.4274
Epoch 38/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 253ms/step - accuracy: 0.9433 - loss: 0.1420 - val_accuracy: 0.8364 - val_loss: 0.4363
Epoch 39/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 252ms/step - accuracy: 0.9325 - loss: 0.1676 - val_accuracy: 0.8458 - val_loss: 0.4268
Epoch 40/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 251ms/step - accuracy: 0.9487 - loss: 0.1396 - val_accuracy: 0.8458 - val_loss: 0.4373
Epoch 41/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 252ms/step - accuracy: 0.9435 - loss: 0.1709 - val_accuracy: 0.8481 - val_loss: 0.4572
Epoch 42/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m13s[0m 249ms/step - accuracy: 0.9519 - loss: 0.1419 - val_accuracy: 0.8435 - val_loss: 0.4637
Epoch 43/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 256ms/step - accuracy: 0.9304 - loss: 0.1656 - val_accuracy: 0.8248 - val_loss: 0.5690
Epoch 44/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 252ms/step - accuracy: 0.9233 - loss: 0.2013 - val_accuracy: 0.8551 - val_loss: 0.4235
Epoch 45/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 252ms/step - accuracy: 0.9634 - loss: 0.1338 - val_accuracy: 0.8481 - val_loss: 0.4394
Epoch 46/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 251ms/step - accuracy: 0.9442 - loss: 0.1380 - val_accuracy: 0.8458 - val_loss: 0.4698
Epoch 47/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 254ms/step - accuracy: 0.9368 - loss: 0.1555 - val_accuracy: 0.8458 - val_loss: 0.4358
Epoch 48/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 253ms/step - accuracy: 0.9529 - loss: 0.1199 - val_accuracy: 0.8505 - val_loss: 0.4860
Epoch 49/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 251ms/step - accuracy: 0.9416 - loss: 0.1373 - val_accuracy: 0.8528 - val_loss: 0.4813
Epoch 50/50
[1m54/54[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m14s[0m 255ms/step - accuracy: 0.9595 - loss: 0.1228 - val_accuracy: 0.8621 - val_loss: 0.4528

模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

使用模型预测

# 加载效果最好的模型权重
model.load_weights('best_model.weights.h5')
from PIL import Image
import numpy as npimg = Image.open(r"C:\Users\11054\Desktop\kLearning\p4_learning\data\Others\NM01_01_00.jpg")  
image = tf.image.resize(img, [img_height, img_width])img_array = tf.expand_dims(image, 0)predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 86ms/step
预测结果为: Others

个人总结

使用了新版本的tensorflow,layers.Rescaling(1./255, input_shape=(img_height, img_width, 3))方法与旧版本调用有所不同,尝试了将归一化注释,结果显示收敛精度显著降低

相关文章:

T4打卡 学习笔记

所用环境 ● 语言环境:Python3.11 ● 编译器:jupyter notebook ● 深度学习框架:TensorFlow2.16.1 ● 显卡(GPU):NVIDIA GeForce RTX 2070 设置GPU from tensorflow import keras from tensorflow.keras…...

抖音矩阵云混剪系统源码 短视频矩阵营销系统V2(全开源版)

>>>系统简述: 抖音阵营销系统多平台多账号一站式管理,一键发布作品。智能标题,关键词优化,排名查询,混剪生成原创视频,账号分组,意向客户自动采集,智能回复,多…...

zabbix报警机制

zabbix思路流程...

【Matlab】-- 飞蛾扑火优化算法

文章目录 文章目录 01 飞蛾扑火算法介绍02 飞蛾扑火算法伪代码03 基于Matlab的部分飞蛾扑火MFO算法04 参考文献 01 飞蛾扑火算法介绍 飞蛾扑火算法(Moth-Flame Optimization,MFO)是一种基于自然界飞蛾行为的群体智能优化算法。该算法由 Sey…...

全面体验ONLYOFFICE 8.1版本桌面编辑器

ONLYOFFICE官网 在当今的数字化办公环境中,选择合适的文档处理工具对于提升工作效率和团队协作至关重要。ONLYOFFICE 8.1版本桌面编辑器,作为一款集成了多项先进功能的办公软件,为用户提供了全新的办公体验。今天,我们将深入探索…...

建议csdn赶紧将未经作者同意擅自锁住收费的文章全部解锁,别逼我用极端手段让你们就范

前两天我偶然发现csdn竟然将我以前发表的很多文章锁住向读者收费才让看。 csdn这种无耻行径往小了说是侵犯了作者的版权著作权,往大了说这是在打击我国IT领域未来的发展,因为每一个做过编程工作的人都知道,任何一个程序员的学习成长过程都少不…...

Pycharm一些问题解决办法

研究生期间遇到关于Pycharm一些问题报错以及解决办法的汇总 ModuleNotFoundError: No module named sklearn’ 安装机器学习库,需要注意报错的sklearn是scikit-learn缩写。 pip install scikit-learnPyCharm 导包提示 unresolved reference 描述:模块…...

ONLYOFFICE 桌面编辑器 8.1 发布:全新 PDF 编辑器、幻灯片版式、增强 RTL 支持及更多本地化选项

目录 什么是ONLYOFFICE? ONLYOFFICE 主要特点包括: 官网信息: 1. 功能齐全的 PDF 编辑器 1.1 编辑 PDF 文本 1.2 插入和修改对象 1.3 创建和填写表单 2. 幻灯片版式功能 2.1 快速应用幻灯片版式 2.2 动画窗格的改进 3. 文档编辑、…...

Linux高并发服务器开发(六)线程

文章目录 1. 前言2 线程相关操作3 线程的创建4 进程数据段共享和回收5 线程分离6 线程退出和取消7 线程属性(了解)8 资源竞争9 互斥锁9.1 同步与互斥9.2 互斥锁 10 死锁11 读写锁12 条件变量13 生产者消费者模型14 信号量15 哲学家就餐 1. 前言 进程是C…...

Google发布Gemma 2轻量级开放模型 以极小的成本提供强大的性能

除了 Gemini 系列人工智能模型外,Google还提供 Gemma 系列轻量级开放模型。今天,他们发布了 Gemma 2,这是基于全新架构设计的下一代产品,具有突破性的性能和效率。 Gemma 2 有两种规格:90 亿 (9B) 和 270 亿 (27B) 个参…...

精品UI知识付费系统源码网站EyouCMS模版源码

这是一款知识付费平台模板,后台可上传本地视频,批量上传视频连接, 视频后台可设计权限观看,免费试看时间时长,会员等级观看,付费观看等功能, 也带软件app权限下载,帮助知识教育和软件…...

使用Apache POI库在Java中导出Excel文件的详细步骤

使用Apache POI库在Java中导出Excel文件的详细步骤 学习总结 1、掌握 JAVA入门到进阶知识(持续写作中……) 2、学会Oracle数据库入门到入土用法(创作中……) 3、手把手教你开发炫酷的vbs脚本制作(完善中……) 4、牛逼哄哄的 IDEA编程利器技…...

基于C#在WPF中使用斑马打印机进行打印

最近在项目中接手了一个比较有挑战性的模块——用斑马打印机将需要打印的内容打印出来。苦苦折腾了两天,总算有所收获,就发到网上来骗骗分数-_-|| 项目中使用的打印机型号为GX430t的打印机,接手的时候,自己对于打印机这块儿是眼前…...

六、资产安全—信息分级资产管理与隐私保护练习题(CISSP)

六、资产安全—信息分级资产管理与隐私保护(CISSP): 六、资产安全—信息分级资产管理与隐私保护(C...

使用 AutoGen 的 AI 智能体设计模式

1.Auto Gen框架 在Auto中,每种智能体分别扮演不同的角色。 ConversableAgent 作为最高级别的智能体抽象,为所有具体智能体提供了基础的通信能力。这包括发送和接收信息的能力,以及基于这些信息进行内部状态更新的能力。所有从这个类派生的智能体都继承了这些基本功能…...

Android InputChannel连接

InputChannel是InputDispatcher 和应用程序 (InputTarget) 的通讯桥梁,InputDispatcher 通知应用程序有输入事件,通过InputChannel中的socket进行通信。 连接InputDispatcher和窗口 WinodwManagerService:addwindow: WMS 添加窗口时,会创建…...

爬虫笔记17——selenium框架的使用

selenium框架的使用 1、python程序安装selenium框架2、下载Chrome谷歌驱动3、selenium的基本使用4、多个标签页切换顺序混乱的问题 1、python程序安装selenium框架 # 在安装过程中最好限定框架版本为4.9.1 # pip install selenium 没有制定版本,非镜像下载也会比较…...

[BUUCTF从零单排] Web方向 02.Web入门篇之『常见的搜集』解题思路(dirsearch工具详解)

这是作者新开的一个专栏《BUUCTF从零单排》,旨在从零学习CTF知识,方便更多初学者了解各种类型的安全题目,后续分享一定程度会对不同类型的题目进行总结,并结合CTF书籍和真实案例实践,希望对您有所帮助。当然&#xff0…...

深度相机识别物体——实现数据集准备与数据集分割

一、数据集准备——Labelimg进行标定 1.安装labelimg——pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple 2.建立相应的数据集存放文件夹 3.打开labelimg,直接在命令行输入labelimg即可,并初始化 4.开始标注,设置标注好…...

STM32第十一课:ADC采集光照

文章目录 需求一、ADC概要二、实现流程1.开时钟,分频,配IO2.配置ADC工作模式3.配置通道4.复位校准5.数值的获取 三、需求的实现总结 需求 通过ADC转换实现光照亮度的数字化测量,最后将实时测量的结果打印在串口上。 一、ADC概要 ADC全称是A…...

python查找支撑数 青少年编程电子学会python编程等级考试三级真题解析2022年3月

目录 python查找支撑数 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序代码 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python查找支撑数 2022年3月 python编程等级考试级编程题 一、题目要求…...

创建一个快速、高效的网络爬虫:PHP和Selenium示例

随着互联网的不断发展,数据爬取已经成为了许多人的必备技能。而网络爬虫则是实现数据爬取的重要工具之一。 网络爬虫可以自动化地访问网站、获取内容、分析页面并提取所需数据。其中,Selenium是一款非常优秀的网络自动化测试工具,能够模拟真…...

两张图片怎样拼在一起?将两张图片拼在一起的几种方法介绍

两张图片怎样拼在一起?拼接两张图片是一种常见的编辑技巧,能够将不同的视觉元素融合成一个整体,从而创造出更加生动和丰富的图像效果。无论是为了设计创意作品、制作社交媒体内容,还是简单地为个人相册增添趣味,掌握如…...

百日筑基第五天-关于maven

百日筑基第五天-关于maven Maven 是什么 Maven 是一个项目管理工具,它包含了一个项目对象模型(Project Object Model),反映在配置中,就是一个 pom.xml 文件。是一组标准集合,一个项目的生命周期、一个依赖…...

【CSS in Depth 2 精译】2.2 em 和 rem + 2.2.1 使用 em 定义字号

当前内容所在位置 第一章 层叠、优先级与继承第二章 相对单位 2.1 相对单位的威力 2.1.1 响应式设计的兴起 2.2 em 与 rem ✔️ 2.2.1 使用 em 定义字号 ✔️2.2.2 使用 rem 设置字号 2.3 告别像素思维2.4 视口的相对单位2.5 无单位的数值与行高2.6 自定义属性2.7 本章小结 2.…...

C++Primer Plus 第十四章代码重用:14.4.4 数组模板示例和非类型参数

系列文章目录 14.4.4 数组模板示例和非类型参数 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录14.4.4 数组模板示例和非类型参数 14.4.4 数组模板示例和非类型参数 模板常用作容器类,这…...

短视频哪个软件好用?成都柏煜文化传媒有限公司

短视频哪个软件好用?一文带你了解各大平台特色 随着移动互联网的飞速发展,短视频已经成为现代人生活中不可或缺的一部分。市面上涌现出众多短视频平台,它们各具特色,满足了不同用户的需求。那么,短视频哪个软件好用呢…...

金融科技:重塑用户体验,驱动满意度飙升

随着科技的飞速发展,金融科技(FinTech)已经深入到我们生活的每一个角落,从日常支付到投资理财,再到跨境汇款,它都在悄无声息地改变着我们的金融行为。而在这背后一个不可忽视的驱动力就是金融科技对用户体验…...

JavaScript——算术运算符

目录 任务描述 相关知识 - * / %运算符 递增运算符和递减运算符 编程要求 任务描述 本关任务:给定两个字符串变量,把它们转为数字后相除,拼接被除数、除数和余数为一个新的字符串。 例如:a 为 "5",b 为…...

备份SQL Server数据库并还原到另一台服务器

我可以将SQL Server数据库备份到另一台服务器吗? 有时您可能希望将 SQL数据库从一台服务器复制到另一台服务器,或者将计算机复制到计算机。可能的场景包括测试、检查一致性、从崩溃的机器恢复数据库、在不同的机器上处理同一个项目等。 是的&#xff0c…...

二刷算法训练营Day45 | 动态规划(7/17)

目录 详细布置: 1. 139. 单词拆分 2. 多重背包理论基础 3. 背包总结 3.1 背包递推公式 3.2 遍历顺序 01背包 完全背包 详细布置: 1. 139. 单词拆分 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单…...

大模型项目落地时,该如何估算模型所需GPU算力资源

近期公司有大模型项目落地。在前期沟通时,对于算力估算和采购方案许多小伙伴不太了解,在此对相关的算力估算和选择进行一些总结。 不喜欢过程的可以直接 跳到HF上提供的模型计算器 要估算大模型的所需的显卡算力,首先要了解大模型的参数基础知识。 大模型的规模、参数的理解…...

LLM应用开发-RAG系统评估与优化

前言 Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,在上一篇文章中,我们学习了如何基于LangChain构建RAG应用,并且通过Streamlit将这个RAG应用部署到了阿里云服务器;&am…...

秋招突击——第七弹——Redis快速入门

文章目录 引言Redis是什么 正文对象String字符串面试重点 List面试考点 压缩列表ZipList面试题 Set面试题讲解 Hash面试重点 HASHTABLE底层面试考点 跳表面试重点 ZSET有序链表面试重点 总结 引言 在项目和redis之间,我犹豫了一下,觉得还是了解学习一下…...

软考初级网络管理员__操作系统单选题

1.在Windows资源管理器中,假设已经选定文件,以下关于“复制”操作的叙述中,正确的有()。 按住Ctr键,拖至不同驱动器的图标上 按住AIt键,拖至不同驱动器的图标上 直接拖至不同驱动器的图标上 按住Shift键&#xff0…...

从入门到精通:网络编程套接字(万字详解,小白友好,建议收藏)

一、预备知识 1.1 理解源IP地址和目的IP地址 在网络编程中,IP地址(Internet Protocol Address)是每个连接到互联网的设备的唯一标识符。IP地址可以分为IPv4和IPv6两种类型。IPv4地址是由32位二进制数表示,通常分为四个八位组&am…...

dledger原理源码分析系列(一)架构,核心组件和rpc组件

简介 dledger是openmessaging的一个组件, raft算法实现,用于分布式日志,本系列分析dledger如何实现raft概念,以及dledger在rocketmq的应用 本系列使用dledger v0.40 本文分析dledger的架构,核心组件;rpc组…...

第七节:如何浅显易懂地理解Spring Boot中的依赖注入(自学Spring boot 3.x的第二天)

大家好,我是网创有方,今天我开始学习spring boot的第一天,一口气写了这么多。 这节通过一个非常浅显易懂的列子来讲解依赖注入。 在Spring Boot 3.x中,依赖注入(Dependency Injection, DI)是一个核心概念…...

Postman自动化测试实战:使用脚本提升测试效率

在软件开发过程中,接口测试是确保后端服务稳定性和可靠性的关键步骤。Postman作为一个流行的API开发工具,提供了强大的脚本功能来实现自动化测试。通过在Postman中使用脚本,测试人员可以编写测试逻辑,实现测试用例的自动化执行&am…...

CSMA/CA并不是“公平”的

CSMA/CA会造成过于公平,对于最需要流量的节点,是最不友好的,而对于最不需要流量的节点,则是最友好的。 CSMA/CA是优先公平来工作的。 CSMA/CA首先各节点使用DIFS界定air idle,在此期间大家都等待 其次,为了同时发送引起碰撞,在DIFS之后随机从CWmin和CWmax之间选择一个时…...

【漏洞复现】I doc view——任意文件读取

声明:本文档或演示材料仅供教育和教学目的使用,任何个人或组织使用本文档中的信息进行非法活动,均与本文档的作者或发布者无关。 文章目录 漏洞描述漏洞复现测试工具 漏洞描述 I doc view 在线文档预览是一个用于查看、编辑、管理文档的工具…...

图数据库 vs 向量数据库

最近大模型出来之后,向量数据库重新翻红,业界和市场上有不少声音认为向量数据库会极大的影响图数据库,图数据库市场会萎缩甚至消失,今天就从技术原理角度来讨论下图数据库和向量数据库到底差别在哪里,适合什么场景&…...

企业品牌出海第一站 维基百科词条创建

维基百科是一部内容开放、自由的网络百科全书,旨在创造一个涵盖所有领域知识,服务所有互联网用户的知识性百科全书。其在国外应用非常广泛且认可度很高,国内品牌出海或国际品牌都很有必要创建企业自己的维基百科页面,以及企业高管的个人维基百科页面。 如…...

Windows下activemq集群配置(broker-network)

1.activemq版本信息 activemq:apache-activemq-5.18.4 2.activemq架构 3.activemq集群配置 activemq集群配置基于Networks of Brokers 这种HA方案的优点:是占用的节点数更少(只需要2个节点),而且2个broker都可以响应消息的接收与发送。不足&#xff…...

心理辅导平台系统

摘 要 中文本论文基于Java Web技术设计与实现了一个心理辅导平台。通过对国内外心理辅导平台发展现状的调研,本文分析了心理辅导平台的背景与意义,并提出了论文研究内容与创新点。在相关技术介绍部分,对Java Web、SpringBoot、B/S架构、MVC模…...

代理IP对SEO影响分析:提升网站排名的关键策略

你是否曾经为网站排名难以提升而苦恼?代理服务器或许就是你忽略的关键因素。在竞争激烈的互联网环境中,了解代理服务器对SEO的影响,有助于你采取更有效的策略,提高网站的搜索引擎排名。本文将为你详细分析代理服务器在SEO优化中的…...

【leetcode--三数之和】

这道题记得之前做过,但是想不起来了。。总结一下: 函数的主要步骤和关键点: 排序:对输入的整数数组nums进行排序。这是非常重要的,因为它允许我们使用双指针技巧来高效地找到满足条件的三元组。初始化:定…...

解决Java中的ClassCastException问题

解决Java中的ClassCastException问题 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在Java编程中,ClassCastException是一个常见的运行时异常&am…...

【TensorFlow深度学习】混合生成模型:结合AR与AE的创新尝试

混合生成模型:结合AR与AE的创新尝试 引言自回归模型与自动编码器的简述混合模型的创新尝试组合AR与AE:MADE混合模型在图学习中的应用 结论与展望 在自我监督学习的广阔天地里,混合生成模型以其独特的魅力,跨越了自回归&#xff08…...

Spring:Spring中分布式事务解决方案

一、前言 在Spring中,分布式事务是指涉及多个数据库或系统的事务处理,其中事务的参与者、支持事务的服务器、资源管理器以及事务管理器位于分布式系统的不同节点上。这样的架构使得两个或多个网络计算机上的数据能够被访问并更新,同时将这些操…...

VideoPrism——探索视频分析领域模型的算法与应用

概述 论文地址:https://arxiv.org/pdf/2402.13217.pdf 视频是我们观察世界的生动窗口,记录了从日常瞬间到科学探索的各种体验。在这个数字时代,视频基础模型(ViFM)有可能分析如此海量的信息并提取新的见解。迄今为止,…...

手机数据恢复篇:恢复出厂设置后从iPhone快速恢复数据

如今,恢复出厂设置后从iPhone恢复数据的需求变得越来越普遍。无论是由于意外重置、软件问题,还是希望恢复以前拥有的设备,丢失数据都可能令人痛苦。值得庆幸的是,随着技术的进步,可以快速安全地检索丢失的信息。本指南…...

mybatisplus多条件对象xml分页查询

不要用它自带的 selectPage方法,会有传参问题 controller import java.util.Set;RestController RequiredArgsConstructor RequestMapping("/deviceInfo" ) public class DeviceInfoController {private final DeviceInfoService deviceInfoService;/**…...

设计模型 - 学习笔记

学习参考: https://blog.csdn.net/m0_65346405/article/details/136994128 《系统分析师教程》 《设计模式之禅》 一. 设计模式的5大原则 1. 单一职责原则 一个类应该只有一个变化因子。 就是说,一个类要变化,比如增加功能,那么引…...

GPT-4o首次引入!全新图像自动评估基准发布!

目录 01 什么是DreamBench? 02 与人类对齐的自动化评估 03 更全面的个性化数据集 04 实验结果 面对层出不穷的个性化图像生成技术,一个新问题摆在眼前:缺乏统一标准来衡量这些生成的图片是否符合人们的喜好。 对此,来自清华大…...

Kafka 位移

Consumer位移管理机制 将Consumer的位移数据作为一条条普通的Kafka消息,提交到__consumer_offsets中。可以这么说,__consumer_offsets的主要作用是保存Kafka消费者的位移信息。使用Kafka主题来保存位移。 消息格式 位移主题就是普通的Kafka主题。也是…...

阿维塔:车端出海idps能力建设实践方案探讨

在当前国内外法规环境下,特别是随着欧标已强制实施和国标即将跟进,推行IDPS显得至关重要。2024年6月27日,在2024第三届中国车联网安全大会上,阿维塔车型出海副总师韩建伟围绕阿维塔IDPS技术方案展开了详细介绍。车端IDPS逻辑上分为应用层、系统层、网络层、外部通信层,并包…...

OpenMV的VisionBoard视觉识别开发板学习记录

此篇博客仅用于对VisionBoard的开发板的学习研究记录,没有教学内容。 一、资料来源 开发板资料链接 开发板环境搭建手册 开发板视频教程 板子的资料网站 openmv官方的网站 目录 一、资料来源二、针对 VisionBoard的目标识别和定位总结1. 目标识别功能1.1 物体检测…...

pod容器基础概念

一 Pod基础概念: ①Pod是kubernetes中最小的资源管理组件,Pod也是最小化运行容器化应用的资源对象。一个 Pod代表着集群中运行的一个进程。一个pod包含一个或多个容器。如:应用容器/业务容器(淘 宝、京东、拼多多后台&#xff…...

Python深度学习:【模型系列】一文搞懂Transformer架构的三种注意力机制

文章目录 1. 什么是注意力机制?2. Transformer 的注意力层2.1 注意力机制基础2.2 理解Q,K,V2.3 交叉注意力层2.4 全局自注意力层2.5 因果注意力层3. 位置编码4. 多头注意力机制5. 总结1. 什么是注意力机制? 注意力机制最初受到人类视觉注意力的启发,目的是让模型在处理大…...

操作系统 - 输入/输出(I/O)管理

输入/输出(I/O)管理 考纲内容 I/O管理基础 设备:设备的基本概念,设备的分类,I/O接口 I/O控制方式:轮询方式,中断方式,DMA方式 I/O软件层次结构:中断处理程序,驱动程序,…...

Java Object类方法介绍

Object作为顶级类,所有的类都实现了该类的方法,包括数组。 查询Java文档: 1、object.eauqls(): 其作用与 有些类似。 : 是一个比较运算符,而不是一个方法。 ①可以判断基本类型,也可以判断引用类型。 ②若…...