Leetcode - 133双周赛
目录
一,3190. 使所有元素都可以被 3 整除的最少操作数
二,3191. 使二进制数组全部等于 1 的最少操作次数 I
三,3192. 使二进制数组全部等于 1 的最少操作次数 II
四,3193. 统计逆序对的数目
一,3190. 使所有元素都可以被 3 整除的最少操作数
本题可以直接模拟,如果使用减法操作,那么需要操作 x % 3 次;如果使用加法操作,那么需要操作 3 - x % 3 次。问最少的操作次数,直接取两者的最小值就行。
代码如下:
class Solution {public int minimumOperations(int[] nums) {int ans = 0;for(int x : nums){ans += Math.min(Math.abs(3-x%3), x%3);}return ans;}
}
二,3191. 使二进制数组全部等于 1 的最少操作次数 I
本题直接从左往右遍历,注 i < nums.length-2 :
- 遇到0,将nums[i],nums[i+1],nums[i+2] 反转(即 ^1),ans++
- 遇到1,什么都不做
- 循环结束判断后两个数是否全为1,如果是,返回ans;否则返回-1
代码如下:
class Solution {public int minOperations(int[] nums) {int ans = 0;int i = 0;for(; i<nums.length-2; i++){if(nums[i]==0){nums[i] ^= 1;nums[i+1] ^= 1;nums[i+2] ^= 1;ans++;}}return nums[i]==1 && nums[i+1]==1 ? ans : -1;}
}
三,3192. 使二进制数组全部等于 1 的最少操作次数 II
本题也可以采用上述做法,代码如下:
class Solution {public int minOperations(int[] nums) {int n = nums.length;int ans = 0;for(int i=0; i<n; i++){if(nums[i] == 0){for(int j=i; j<n; j++)nums[j] ^= 1;ans++;}}return ans;}
}
但是该做法是O(n^2)的时间复杂度,会超时,那么上述做法还有哪里可以优化?可以发现如果一个数执行 ^1操作偶数次,它就会变回原来的值,所以我们可以统计后续元素需要执行反转操作的次数cnt,在枚举到x时,如果cnt为奇数,x ^=1,再判断 x 是否为 0,如果为0,cnt++。依次类推,最终得到的cnt就是答案。
代码如下:
class Solution {public int minOperations(int[] nums) {int ans = 0;for(int i=0; i<nums.length; i++){if(ans%2==1)nums[i] ^= 1;if(nums[i] == 0){ans++;}}return ans;}
}
四,3193. 统计逆序对的数目
本题可以从后先前考虑,假设有3个数,构造逆序对为2的排序:
- 如果最后一个数是2,那么该数与[0,i-1]能组成0个逆序对,就需要[0,i-1]有2个逆序对
- 如果最后一个数是1,那么该数与[0,i-1]能组成1个逆序对,就需要[0,i-1]有1个逆序对
- 如果最后一个数是0,那么该数与[0,i-1]能组成2个逆序对,就需要[0,i-1]有0个逆序对
依次类推,上述问题就化成了与原问题相同的子问题。可以定义dfs(i,j):前 i 个数有 j 个逆序对时的排序个数。
- 没有requirements束缚,假设 k 为 perm[i] 小于[0,i-1]元素的个数,即 perm[i] 能产生 k 个逆序对,那么问题就转换成了前 i-1个数有 j - k 个逆序对的排序个数。(注:k <= Math.min(i,j))
- 有requirements束缚,该问题就只能转换成前 i-1个数有 req[i-1] 个逆序对的排序个数。(注:req[i-1] <= j && req[i-1] >= j - i,这两个条件就表示req[i-1]的范围必须在[ j - i,j],可以这样理解,当前perm[i]能与前i-1个数组成[0,i]个逆序对,那么前i-1个数需要有[j - i,j]个逆序对)
代码如下:
class Solution {public int numberOfPermutations(int n, int[][] requirements) {int[] req = new int[n];Arrays.fill(req, -1);req[0] = 0;for(int[] x : requirements){req[x[0]] = x[1];}if(req[0]>0) return 0; for(int[] r : memo)Arrays.fill(r, -1);return dfs(n-1, req[n-1], req);}int[][] memo = new int[301][401];int dfs(int i, int j, int[] req){if(i == 0) return 1;if(memo[i][j] != -1) return memo[i][j];int res = 0;int cnt = req[i-1];if(cnt >= 0){if(cnt <= j && cnt >= j-i)res = dfs(i-1, cnt, req);}else{for(int k=0; k<=Math.min(i, j); k++){res = (res + dfs(i-1, j-k, req))%1_000_000_007;}}return memo[i][j] = res;}
}
相关文章:
Leetcode - 133双周赛
目录 一,3190. 使所有元素都可以被 3 整除的最少操作数 二,3191. 使二进制数组全部等于 1 的最少操作次数 I 三,3192. 使二进制数组全部等于 1 的最少操作次数 II 四,3193. 统计逆序对的数目 一,3190. 使所有元素都…...
C++总结
...
汽车免拆诊断案例 | 2016 款吉利帝豪EV车无法加速
故障现象 一辆2016款吉利帝豪EV车,累计行驶里程约为28.4万km,车主反映车辆无法加速。 故障诊断 接车后路试,行驶约1 km,踩下加速踏板,无法加速,车速为20 km/h左右,同时组合仪表上的电机及控制…...
前端开发之webpack
安装与入门超详细!webpack入门教程(一)-腾讯云开发者社区-腾讯云...
将内容复制到剪贴板?分享 1 段优质 JS 代码片段!
大家好,我是大澈! 本文约 600 字,整篇阅读约需 1 分钟。 每日分享一段优质代码片段。 今天分享一段 JS 代码片段,使用 Clipboard API 实现将内容复制到剪贴板。 老规矩,先阅读代码片段并思考,再看代码解析…...
MAS0902量产工具分享,MAS0902A开卡教程,MAS0901量产工具下载
MAS0902和MAS1102都是基于SATA3.2技术开发的DRAM-less SSD控制芯片,简单来说就是SATA协议无缓存主控。下面是我摸索的麦光黑金300 240G SSD开卡修复简易教程,也就是MAS0902量产过程: 注意:开卡转接线必须要用ASM1153E或JMS578主控…...
从我邮毕业啦!!!
引言 时间过的好快,转眼间就要从北邮毕业了,距离上一次月度总结又过去了两个月,故作本次总结。 PS: https://github.com/WeiXiao-Hyy/blog整理了后端开发的知识网络,欢迎Star! 毕业🎓 6月1号完成了自己的…...
gemini 1.5 flash (node项目)
https://www.npmjs.com/package/google/generative-ai https://ai.google.dev/pricing?hlzh-cn https://aistudio.google.com/app/apikey https://ai.google.dev/gemini-api/docs/models/gemini?hlzh-cn#gemini-1.5-flash https://ai.google.dev/gemini-api/docs/get-started…...
在线字节大端序小端序转换器
具体请前往:在线字节大端序小端序转换器...
css_17_背景属性鼠标属性
一.背景属性 -属性值:background-color(设置背景颜色) 默认背景颜色是 transparent。 -属性值:background-image(设置背景图片) url(图片的地址) -属性值:background-re…...
Python hash编码(go hash编码)
id"中国人" 首先,go语言hash: import (mmh3 "murmurhash3") mmh3.Murmurhash3([]byte(id)) 对应到Python hash编码,可以直接使用mmh3 import mmh3 mmh3.hash(id,signedFalse) 其源码可以表示为 def sum32WithSeed(datas, seed…...
004 插入排序(lua)
文章目录 123 1 -- Lua中没有类和方法的概念,所以我们将所有功能都写在一个脚本中 -- 交换数组中两个元素的功能 local function swap(arr, i, j) local temp arr[i] arr[i] arr[j] arr[j] temp end -- 插入排序算法的实现 local function insertionS…...
计算机网络 —— 基本概念
基本概念 1. 通信协议2. 面向连接 v.s. 面向无连接3. 电路交换 v.s. 分组交换4. 单工通信 v.s. 双工通信 1. 通信协议 通信协议就是计算机与计算机之间通过网络实现通信时事先达成的一种“约定”。这种“约定”使那些由不同厂商的设备、不同的CPU 以及不同的操作系统组成的计算…...
高精度除法的实现
高精度除法与高精度加法的定义、前置过程都是大致相同的,如果想了解具体内容,可以移步至我的这篇博客:高精度加法计算的实现 在这里就不再详细讲解,只讲解主体过程qwq 主体过程 高精度除法的原理和小学学习的竖式除法是一样的。 …...
STM32CUBEMX配置USB虚拟串口
STM32CUBEMX配置USB虚拟串口 cubemx上默认配置即可。 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传 配置完后生成工程,主要就是要知道串口的收发接口就行了。 发送:CDC_Transmit_FS(),同时记得包含头文件#include “…...
安卓开发中margin和padding的区别
在 Android 开发中,margin 和 padding 都是用来定义视图(View)的空间属性,但它们的作用和应用场景有所不同: Margin(外边距): Margin 是视图与其他视图之间的空间。它定义了视图之间…...
Symfony事件调度系统:掌控应用程序生命周期的钥匙
Symfony事件调度系统:掌控应用程序生命周期的钥匙 引言 Symfony是一个高度灵活的PHP框架,用于构建各种规模的Web应用程序。它的核心特性之一是事件调度系统,该系统允许开发者在应用程序的生命周期中触发和监听事件。这种机制为开发者提供了…...
maven安装jar和pom到本地仓库
举例子我们要将 elastic-job-spring-boot-starter安装到本地的maven仓库,如下: <dependency><groupId>com.github.yinjihuan</groupId><artifactId>elastic-job-spring-boot-starter</artifactId><version>1.0.5&l…...
[leetcode]assign-cookies. 分发饼干
. - 力扣(LeetCode) class Solution { public:int findContentChildren(vector<int>& g, vector<int>& s) {sort(g.begin(), g.end());sort(s.begin(), s.end());int m g.size(), n s.size();int count 0;for (int i 0, j 0; i…...
如何轻松解决复杂文档格式转换问题
上周,我遇到了一个棘手的问题:需要将一大堆PDF文件转换成可编辑的Word文档,时间紧迫,手动转换根本来不及。朋友推荐我使用了一个网站——xuelin.cc,这个网站不仅提供强大的AI对话功能,还能轻松完成各种文档…...
日期类(java)
文章目录 第一代日期类 Date常用构造方法SimpleDateFormat 日期格式化类日期转字符串(String -> Date)字符串转日期 (String->Date) 第二代日期类 Calendar常用字段与如何得到实例对象相关 API 第三代日期类(LocalDate\TIme)日期,时间&…...
【深度学习】C++ Tensorrt Yolov8 目标检测推理
C Tensorrt Yolov8 目标检测推理 模型导出代码yolov8.hyolov8.cppcommon.hppCMakeListmain.cpp C tensorrt对yolov8目标检测模型进行推理。 Windows版本下只需要修改common.hpp对文件的判断S_ISREG 和对文件夹的判断S_ISDIR即可,非核心代码,不调用删掉都…...
【项目日记(二)】搜索引擎-索引制作
❣博主主页: 33的博客❣ ▶️文章专栏分类:项目日记◀️ 🚚我的代码仓库: 33的代码仓库🚚 🫵🫵🫵关注我带你了解更多项目内容 目录 1.前言2.索引结构2.1创捷索引2.2根据索引查询2.3新增文档2.4内存索引保存到磁盘2.5把…...
K 近邻、K-NN 算法图文详解
1. 为什么学习KNN算法 KNN是监督学习分类算法,主要解决现实生活中分类问题。根据目标的不同将监督学习任务分为了分类学习及回归预测问题。 KNN(K-Nearest Neihbor,KNN)K近邻是机器学习算法中理论最简单,最好理解的算法…...
Eclipse + GDB + J-Link 的单片机程序调试实践
Eclipse GDB J-Link 的调试实践 本文介绍如何创建Eclipse的调试配置,如何控制调试过程,如何查看修改各种变量。 对 Eclipse 的要求 所用 Eclipse 应当安装了 Eclipse Embedded CDT 插件。从 https://www.eclipse.org/downloads/packages/ 下载 Ecli…...
前端代码生成辅助工具
1,Axure Axure设计的界面如何生成HTML文件 https://blog.csdn.net/qq_43279782/article/details/112387511 Axure 生成HTML 文件,并用Chrome打开 https://blog.csdn.net/qq_30718137/article/details/80621025 2,OpenUI [开源] OpenUI …...
静态库与动态库总结
一、库文件和头文件 所谓库文件,可以将其理解为压缩包文件,该文件内部通常包含不止一个目标文件(也就是二进制文件)。 值得一提的是,库文件中每个目标文件存储的代码,并非完整的程序,而是一个…...
深入解析tcpdump:网络数据包捕获与分析的利器
引言 在网络技术日新月异的今天,网络数据包的捕获与分析成为了网络管理员、安全专家以及开发人员不可或缺的技能。其中,tcpdump作为一款强大的网络数据包捕获分析工具,广泛应用于Linux系统中。本文将从技术人的角度,详细分析tcpdu…...
【漏洞复现】科立讯通信有限公司指挥调度管理平台uploadgps.php存在SQL注入
0x01 产品简介 科立讯通信指挥调度管理平台是一个专门针对通信行业的管理平台。该产品旨在提供高效的指挥调度和管理解决方案,以帮助通信运营商或相关机构实现更好的运营效率和服务质量。该平台提供强大的指挥调度功能,可以实时监控和管理通信网络设备、…...
什么是自然语言处理(NLP)?详细解读文本分类、情感分析和机器翻译的核心技术
什么是自然语言处理? 自然语言处理(Natural Language Processing,简称NLP)是人工智能的一个重要分支,旨在让计算机理解、解释和生成人类的自然语言。打个比方,你和Siri对话,或使用谷歌翻译翻译一…...
盘石网站做的怎么样/销售推广的方法都有哪些
目录前言代码前言 因为课程需要,老师要求使用resnet18或者resnet50将cifar10训练到精度到达95%,试过了网上其他很多方法,发现精度最高的是在预处理化的时候,图片resize到32,32,并且padding4进行填充,并且优…...
视频直播网站/软文营销方法有哪些
/** 1.ruby环境 官网下载的:tar -zxvf xxxxx安装包xxxx 解压到/opt/ruby/下 执行命令 cd ruby ./configure --prefix/usr/local/ruby; 文件夹如果不存在就新建 make make install 2.ruby的redis客户端安装 下载:https://rubygems.org/downloads/redi…...
运城 网站 建设 招聘/红河网站建设
//算法思想:扫描顺序表L的前半部分元素,对于元素L.data[i](0<i<L.length/2),将其余后半部分对应元素L.data[L.length-i-1]进行交换void Reverse (sqlist &L){Elemtype temp;for(i0;i<L.length/2;i){tempL.data[i];L.data[i]L.data[L.length…...
做网站读哪个专业/seo计费系统源码
Spring AOP注解通过Autowired,Resource,Qualifier,PostConstruct,PreDestroy注入属性的配置文件详解 本文介绍了使用Spring注解注入属性的方法。使用注解以前,注入属性通过类以及配置文件来实…...
wordpress 登录机制/温州seo推广外包
点击下方蓝字快递物流信息单号查询↓↓↓↓全国快递查询入口;顺丰速运查询入口;京东快递查询入口;邮政快递查询入口;韵达快递查询入口;圆通快递查询入口;中通快递查询入口;申通快递查询入口&…...
企业网站管理系统演示平台/海南seo排名优化公司
2410中断中SRCPND和INTPND清零的疑问SRCPND是中断源引脚寄存器,某个位被置1表示相应的中断被触发,但我们知道在同一时刻内系统可以触发若干个中断,只要中断被触发了,SRCPND的相应位便被置1,也就是说SRCPND在同一时刻可以有若干位同时被置1,然而INTPND则不同,他在某一时刻只能有…...