当前位置: 首页 > news >正文

Leetcode - 133双周赛

目录

一,3190. 使所有元素都可以被 3 整除的最少操作数

二,3191. 使二进制数组全部等于 1 的最少操作次数 I

三,3192. 使二进制数组全部等于 1 的最少操作次数 II

四,3193. 统计逆序对的数目


一,3190. 使所有元素都可以被 3 整除的最少操作数

本题可以直接模拟,如果使用减法操作,那么需要操作 x % 3 次;如果使用加法操作,那么需要操作 3 - x % 3 次。问最少的操作次数,直接取两者的最小值就行。

代码如下:

class Solution {public int minimumOperations(int[] nums) {int ans = 0;for(int x : nums){ans += Math.min(Math.abs(3-x%3), x%3);}return ans;}
}

二,3191. 使二进制数组全部等于 1 的最少操作次数 I

本题直接从左往右遍历,注 i < nums.length-2 :

  • 遇到0,将nums[i],nums[i+1],nums[i+2] 反转(即 ^1),ans++
  • 遇到1,什么都不做
  • 循环结束判断后两个数是否全为1,如果是,返回ans;否则返回-1

代码如下:

class Solution {public int minOperations(int[] nums) {int ans = 0;int i = 0;for(; i<nums.length-2; i++){if(nums[i]==0){nums[i] ^= 1;nums[i+1] ^= 1;nums[i+2] ^= 1;ans++;}}return nums[i]==1 && nums[i+1]==1 ? ans : -1;}
}

三,3192. 使二进制数组全部等于 1 的最少操作次数 II

本题也可以采用上述做法,代码如下:

class Solution {public int minOperations(int[] nums) {int n = nums.length;int ans = 0;for(int i=0; i<n; i++){if(nums[i] == 0){for(int j=i; j<n; j++)nums[j] ^= 1;ans++;}}return ans;}
}

但是该做法是O(n^2)的时间复杂度,会超时,那么上述做法还有哪里可以优化?可以发现如果一个数执行 ^1操作偶数次,它就会变回原来的值,所以我们可以统计后续元素需要执行反转操作的次数cnt,在枚举到x时,如果cnt为奇数,x ^=1,再判断 x 是否为 0,如果为0,cnt++。依次类推,最终得到的cnt就是答案。

代码如下:

class Solution {public int minOperations(int[] nums) {int ans = 0;for(int i=0; i<nums.length; i++){if(ans%2==1)nums[i] ^= 1;if(nums[i] == 0){ans++;}}return ans;}
}

四,3193. 统计逆序对的数目

本题可以从后先前考虑,假设有3个数,构造逆序对为2的排序:

  • 如果最后一个数是2,那么该数与[0,i-1]能组成0个逆序对,就需要[0,i-1]有2个逆序对
  • 如果最后一个数是1,那么该数与[0,i-1]能组成1个逆序对,就需要[0,i-1]有1个逆序对
  • 如果最后一个数是0,那么该数与[0,i-1]能组成2个逆序对,就需要[0,i-1]有0个逆序对

依次类推,上述问题就化成了与原问题相同的子问题。可以定义dfs(i,j):前 i 个数有 j 个逆序对时的排序个数。

  • 没有requirements束缚,假设 k 为 perm[i] 小于[0,i-1]元素的个数,即 perm[i] 能产生 k 个逆序对,那么问题就转换成了前 i-1个数有 j - k 个逆序对的排序个数。(注:k <= Math.min(i,j))
  • 有requirements束缚,该问题就只能转换成前 i-1个数有 req[i-1] 个逆序对的排序个数。(注:req[i-1] <= j && req[i-1] >= j - i,这两个条件就表示req[i-1]的范围必须在[ j - i,j],可以这样理解,当前perm[i]能与前i-1个数组成[0,i]个逆序对,那么前i-1个数需要有[j - i,j]个逆序对)

代码如下:

class Solution {public int numberOfPermutations(int n, int[][] requirements) {int[] req = new int[n];Arrays.fill(req, -1);req[0] = 0;for(int[] x : requirements){req[x[0]] = x[1];}if(req[0]>0) return 0; for(int[] r : memo)Arrays.fill(r, -1);return dfs(n-1, req[n-1], req);}int[][] memo = new int[301][401];int dfs(int i, int j, int[] req){if(i == 0) return 1;if(memo[i][j] != -1) return memo[i][j];int res = 0;int cnt = req[i-1];if(cnt >= 0){if(cnt <= j && cnt >= j-i)res = dfs(i-1, cnt, req);}else{for(int k=0; k<=Math.min(i, j); k++){res = (res + dfs(i-1, j-k, req))%1_000_000_007;}}return memo[i][j] = res;}
}

相关文章:

Leetcode - 133双周赛

目录 一&#xff0c;3190. 使所有元素都可以被 3 整除的最少操作数 二&#xff0c;3191. 使二进制数组全部等于 1 的最少操作次数 I 三&#xff0c;3192. 使二进制数组全部等于 1 的最少操作次数 II 四&#xff0c;3193. 统计逆序对的数目 一&#xff0c;3190. 使所有元素都…...

C++总结

...

汽车免拆诊断案例 | 2016 款吉利帝豪EV车无法加速

故障现象 一辆2016款吉利帝豪EV车&#xff0c;累计行驶里程约为28.4万km&#xff0c;车主反映车辆无法加速。 故障诊断 接车后路试&#xff0c;行驶约1 km&#xff0c;踩下加速踏板&#xff0c;无法加速&#xff0c;车速为20 km/h左右&#xff0c;同时组合仪表上的电机及控制…...

前端开发之webpack

安装与入门超详细&#xff01;webpack入门教程(一)-腾讯云开发者社区-腾讯云...

将内容复制到剪贴板?分享 1 段优质 JS 代码片段!

大家好&#xff0c;我是大澈&#xff01; 本文约 600 字&#xff0c;整篇阅读约需 1 分钟。 每日分享一段优质代码片段。 今天分享一段 JS 代码片段&#xff0c;使用 Clipboard API 实现将内容复制到剪贴板。 老规矩&#xff0c;先阅读代码片段并思考&#xff0c;再看代码解析…...

MAS0902量产工具分享,MAS0902A开卡教程,MAS0901量产工具下载

MAS0902和MAS1102都是基于SATA3.2技术开发的DRAM-less SSD控制芯片&#xff0c;简单来说就是SATA协议无缓存主控。下面是我摸索的麦光黑金300 240G SSD开卡修复简易教程&#xff0c;也就是MAS0902量产过程&#xff1a; 注意&#xff1a;开卡转接线必须要用ASM1153E或JMS578主控…...

从我邮毕业啦!!!

引言 时间过的好快&#xff0c;转眼间就要从北邮毕业了&#xff0c;距离上一次月度总结又过去了两个月&#xff0c;故作本次总结。 PS: https://github.com/WeiXiao-Hyy/blog整理了后端开发的知识网络&#xff0c;欢迎Star&#xff01; 毕业&#x1f393; 6月1号完成了自己的…...

gemini 1.5 flash (node项目)

https://www.npmjs.com/package/google/generative-ai https://ai.google.dev/pricing?hlzh-cn https://aistudio.google.com/app/apikey https://ai.google.dev/gemini-api/docs/models/gemini?hlzh-cn#gemini-1.5-flash https://ai.google.dev/gemini-api/docs/get-started…...

在线字节大端序小端序转换器

具体请前往&#xff1a;在线字节大端序小端序转换器...

css_17_背景属性鼠标属性

一.背景属性 -属性值&#xff1a;background-color&#xff08;设置背景颜色&#xff09; 默认背景颜色是 transparent。 -属性值&#xff1a;background-image&#xff08;设置背景图片&#xff09; url&#xff08;图片的地址&#xff09; -属性值&#xff1a;background-re…...

Python hash编码(go hash编码)

id"中国人" 首先&#xff0c;go语言hash: import (mmh3 "murmurhash3") mmh3.Murmurhash3([]byte(id)) 对应到Python hash编码&#xff0c;可以直接使用mmh3 import mmh3 mmh3.hash(id,signedFalse) 其源码可以表示为 def sum32WithSeed(datas, seed…...

004 插入排序(lua)

文章目录 123 1 -- Lua中没有类和方法的概念&#xff0c;所以我们将所有功能都写在一个脚本中 -- 交换数组中两个元素的功能 local function swap(arr, i, j) local temp arr[i] arr[i] arr[j] arr[j] temp end -- 插入排序算法的实现 local function insertionS…...

计算机网络 —— 基本概念

基本概念 1. 通信协议2. 面向连接 v.s. 面向无连接3. 电路交换 v.s. 分组交换4. 单工通信 v.s. 双工通信 1. 通信协议 通信协议就是计算机与计算机之间通过网络实现通信时事先达成的一种“约定”。这种“约定”使那些由不同厂商的设备、不同的CPU 以及不同的操作系统组成的计算…...

高精度除法的实现

高精度除法与高精度加法的定义、前置过程都是大致相同的&#xff0c;如果想了解具体内容&#xff0c;可以移步至我的这篇博客&#xff1a;高精度加法计算的实现 在这里就不再详细讲解&#xff0c;只讲解主体过程qwq 主体过程 高精度除法的原理和小学学习的竖式除法是一样的。 …...

STM32CUBEMX配置USB虚拟串口

STM32CUBEMX配置USB虚拟串口 cubemx上默认配置即可。 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传 配置完后生成工程&#xff0c;主要就是要知道串口的收发接口就行了。 发送&#xff1a;CDC_Transmit_FS()&#xff0c;同时记得包含头文件#include “…...

安卓开发中margin和padding的区别

在 Android 开发中&#xff0c;margin 和 padding 都是用来定义视图&#xff08;View&#xff09;的空间属性&#xff0c;但它们的作用和应用场景有所不同&#xff1a; Margin&#xff08;外边距&#xff09;&#xff1a; Margin 是视图与其他视图之间的空间。它定义了视图之间…...

Symfony事件调度系统:掌控应用程序生命周期的钥匙

Symfony事件调度系统&#xff1a;掌控应用程序生命周期的钥匙 引言 Symfony是一个高度灵活的PHP框架&#xff0c;用于构建各种规模的Web应用程序。它的核心特性之一是事件调度系统&#xff0c;该系统允许开发者在应用程序的生命周期中触发和监听事件。这种机制为开发者提供了…...

maven安装jar和pom到本地仓库

举例子我们要将 elastic-job-spring-boot-starter安装到本地的maven仓库&#xff0c;如下&#xff1a; <dependency><groupId>com.github.yinjihuan</groupId><artifactId>elastic-job-spring-boot-starter</artifactId><version>1.0.5&l…...

[leetcode]assign-cookies. 分发饼干

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:int findContentChildren(vector<int>& g, vector<int>& s) {sort(g.begin(), g.end());sort(s.begin(), s.end());int m g.size(), n s.size();int count 0;for (int i 0, j 0; i…...

如何轻松解决复杂文档格式转换问题

上周&#xff0c;我遇到了一个棘手的问题&#xff1a;需要将一大堆PDF文件转换成可编辑的Word文档&#xff0c;时间紧迫&#xff0c;手动转换根本来不及。朋友推荐我使用了一个网站——xuelin.cc&#xff0c;这个网站不仅提供强大的AI对话功能&#xff0c;还能轻松完成各种文档…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...