DEBOPIE框架:打造最好的ChatGPT交易机器人
本文介绍了如何利用 DEBOPIE 框架并基于 ChatGPT 创建高效交易机器人,并强调了在使用 AI 辅助交易时需要注意的限制以及操作步骤。原文: Build the Best ChatGPT Trading Bots with my “DEBOPIE” Framework
如今有大量文章介绍如何通过 ChatGPT 帮助决定如何以及在哪投资。
请记住:ChatGPT 只是工具,你让它做什么,它就会做什么。
我总是说: AI可以带你到达目的地,但不会取代你成为司机。
如果真的想通过 ChatGPT 创建盈利的交易机器人,一定需要清晰的框架:在向 ChatGPT 寻求帮助之前,必须首先制定交易策略。
这就是为什么我创建了 DEBOPIE 模型 -- 一个可以用来创建盈利的 ChatGPT 交易机器人的框架/模板。
🤖你是投资者,ChatGPT 是你的程序员
在拥有这些AI工具之前,如果你想有一个交易机器人,要么自己编程(如果你是程序员的话),要么雇个程序员来帮忙。
现在,ChatGPT 可以成为你的私人程序员。
ChatGPT 是一种大语言模型(LLM),这意味着它非常擅长处理单词,它有能力创建单词之间的统计关系,包括计算机代码。但是...
这并不意味着 ChatGPT 知道如何投资。
ChatGPT 更像是一个巨大的程序库,你提出什么要求,它就输出什么。例如,如果你有了个好主意,想创建一个在特定条件下买卖比特币的交易机器人,那就可以让 ChatGPT 来编写代码。
记住我说过的话:AI可以带你到达目的地,但不会取代你成为司机。
💬向私人机器人程序员提出正确的问题
当你要求 ChatGPT 创建一个回报率高达 130% 的交易机器人[1]时,不能只是简单的要求"创建一个盈利的交易机器人"。
相反,必须首先在脑海中想象出交易机器人,然后询问 ChatGPT。
例如,我将均值回归布林带机器人可视化,然后让 ChatGPT 创建。
现在,任何人都可以在 ChatGPT 的帮助下编码实现自己的项目,包括交易机器人,但首先需要一个清晰的框架。
🤔在介绍 DEBOPIE 框架之前,先了解其局限性
我们首先了解一下其局限性,然后再介绍 DEBOPIE 框架,并利用 ChatGPT 创建有效的交易机器人。
了解局限性:
-
市场细微差别
ChatGPT 不了解市场情绪,也不了解经济和现实世界的最新动态。
-
风险管理
ChatGPT 无法做出风险管理[2]决定,而这是交易中最重要的事情。ChatGPT 不了解你的风险状况和财务目标。
-
过时的数据
ChatGPT 创建的交易机器人自然会使用历史数据进行回测,但过去有效的策略在未来可能会失效。
-
数据过拟合
ChatGPT 可以生成在历史数据上表现出色的交易机器人,但在真实市场环境中却会失败。要解决这个问题,请确保进行更长时间的回测、对不同资产进行回测、对样本外数据进行回测,甚至进行蒙特卡罗回测。
🏆使用 DEBOPIE 框架创建有效的 ChatGPT 交易机器人
以下是我用 ChatGPT 创建有效交易机器人的 DEBOPIE 策略。
DEBOPIE 代表: Define(定义)、 Engineer(设计)、 Backtest(回测)、 Optimization(优化)、 Pilot(模拟)、 Implement(实施) 和 Extend(扩展)。
-
策略定义。确定策略类型(均值回归、指标型、动量)。选择要交易的资产,并确定入市策略和指标基础策略、仓位大小和风险水平,并写下来。 -
策略设计。请 ChatGPT 根据确定的策略进行开发。 -
策略回测。做大量回测。基于不同年份和不同资产进行 回测 [3],或许还可以进行蒙特卡罗回测。进行压力测试,看看该策略能否在不同市场条件下生存。 -
策略优化。从回测中学习并优化策略参数。可以调整使用的指标和买卖水平。不断调整、优化,直到获得最佳结果的参数。 -
策略模拟。模拟交易测试。在使用真实资金之前,先让机器人用虚拟账户交易几个月。 -
策略实施。实施策略。使用很小比例的资金(比如 1%)。 -
策略扩展、扩大规模。如果机器人能够持续盈利,就可以考虑增加资金了。
如你所见,创建盈利的交易机器人其实很简单--只需了解其局限性,并遵循 DEBOPIE 框架即可。
一旦遵循了这一策略,创建交易机器人就会变得更加容易,从而击败华尔街 99% 的投资者。
💁🏻♂️结论
ChatGPT 可以作为开发交易机器人的编程助手,但它不是自主的投资战略家。尽管它拥有先进的计算能力,但缺乏人类投资者对市场趋势、经济指标和风险评估的洞察力。
冒昧的说一句,如果盲目追随 ChatGPT 作为投资顾问,却缺乏真正的人文洞察力,可能会导致财务崩溃。
💰🤖如果你决定让 ChatGPT 帮忙做交易机器人,请确保遵循 DEBOPIE 框架。
你好,我是俞凡,在Motorola做过研发,现在在Mavenir做技术工作,对通信、网络、后端架构、云原生、DevOps、CICD、区块链、AI等技术始终保持着浓厚的兴趣,平时喜欢阅读、思考,相信持续学习、终身成长,欢迎一起交流学习。为了方便大家以后能第一时间看到文章,请朋友们关注公众号"DeepNoMind",并设个星标吧,如果能一键三连(转发、点赞、在看),则能给我带来更多的支持和动力,激励我持续写下去,和大家共同成长进步!
Use this ChatGPT trading bot to beat 99% of Wall Street investors: https://medium.datadriveninvestor.com/use-this-chatgpt-trading-bot-to-beat-99-of-wall-street-investors-cb924ee38d99
[2]Fear of taking risks when you invest use this new approach instead: https://medium.datadriveninvestor.com/fear-of-taking-risks-when-you-invest-use-this-new-approach-instead-36fb7b742c86
[3]Use ChatGPT to create a profitable trading bot in just a few minutes: https://readmedium.com/use-chatgpt-to-create-a-profitable-trading-bot-in-just-a-few-minutes-f153cf51ee3c
本文由 mdnice 多平台发布
相关文章:
DEBOPIE框架:打造最好的ChatGPT交易机器人
本文介绍了如何利用 DEBOPIE 框架并基于 ChatGPT 创建高效交易机器人,并强调了在使用 AI 辅助交易时需要注意的限制以及操作步骤。原文: Build the Best ChatGPT Trading Bots with my “DEBOPIE” Framework 如今有大量文章介绍如何通过 ChatGPT 帮助决定如何以及在…...
C++ Thead多线程 condition_variable 与其使用场景---C++11多线程快速学习
std::condition_variable 的步骤如下: 创建一个 std::condition_variable 对象。 创建一个互斥锁 std::mutex 对象,用来保护共享资源的访问。 在需要等待条件变量的地方 使用 std::unique_lock<std::mutex> 对象锁定互斥锁 并调用 std::conditio…...
什么是前端开发?
前端开发是什么一种工作?这里以修房子举例: jquery根据数据去生成对应的html代码。首先得有一个html代码的“房屋构造”,然后根据数据去填充“房屋构造”的“血肉”,最后JavaScript通过事件等方法给一砖一瓦修好的房屋添加“灵魂…...
大数据面试题之Spark(1)
目录 Spark的任务执行流程 Spark的运行流程 Spark的作业运行流程是怎么样的? Spark的特点 Spark源码中的任务调度 Spark作业调度 Spark的架构 Spark的使用场景 Spark on standalone模型、YARN架构模型(画架构图) Spark的yarn-cluster涉及的参数有哪些? Spark提交jo…...
Spring Boot 和 Spring Framework 的区别是什么?
SpringFramework和SpringBoot都是为了解决在Java开发过程中遇到的各种问题而出现的。了解它们之间的差异,能够更好的帮助我们使用它们。 SpringFramework SpringFramework是一个开源的Java平台,它提供了一种全面的架构和基础设施来支持Java应用程序的开…...
JVM原理(四):JVM垃圾收集算法与分代收集理论
从如何判定消亡的角度出发,垃圾收集算法可以划分为“引用计数式垃圾收集”和“追踪式垃圾收集”两大类。 本文主要介绍的是追踪式垃圾收集。 1. 分代收集理论 当代垃圾收集器大多遵循“分代收集”的理论进行设计,它建立在两个假说之上: 弱分…...
1961 Springboot自习室预约系统idea开发mysql数据库web结构java编程计算机网页源码maven项目
一、源码特点 springboot 自习室预约管理系统是一套完善的信息系统,结合springboot框架和bootstrap完成本系统,对理解JSP java编程开发语言有帮助系统采用springboot框架(MVC模式开发),系统具有完整的源代码和数据库…...
前端面试题(12)答案版
1. H5的新特性? 1) 更加语义化的标签,如<header>、<nav>、<article>等,便于网页结构的表达。 2) 新的多媒体标签,如<video>和<audio>,支持本地视频和音频的播放。 3) 本地存储API,如localStorage和sessionStorage,用于在客户端保存数…...
SpringMVC 域对象共享数据
文章目录 1、使用ServletAPI向request域对象共享数据2、使用ModelAndView向request域对象共享数据3、使用Model向request域对象共享数据4、使用map向request域对象共享数据5、使用ModelMap向request域对象共享数据6、Model、ModelMap、Map的关系7、向session域共享数据8、向app…...
每天五分钟深度学习框架pytorch:tensor向量之间常用的运算操作
本文重点 在数学中经常有加减乘除运算,在tensor中也不例外,也有类似的运算,本节课程我们将学习tensor中的运算 常见运算 加法+或者add import torch import numpy as np a=torch.rand(16,3,28,28) b=torch.rand(1,3,28,28) print(a+b) import torch import numpy as np a…...
【数据结构】(C语言):栈
栈: 线性的集合。后进先出(LIFO,last in first out)。两个指针:指向栈顶和栈底。栈顶指向最后进入且第一个出去的元素。栈底指向第一个进入且最后一个出去的元素。两个操作:入栈(往栈尾添加元素…...
c++类成员指针用法
1)C入门级小知识,分享给将要学习或者正在学习C开发的同学。 2)内容属于原创,若转载,请说明出处。 3)提供相关问题有偿答疑和支持。 c中新增类成员指针操作,为了访问方便,他是指…...
[240625] Continue -- 开源 Copilot | Web-Check 网站分析工具 | Story of EOL
目录 Continue -- 开源 CopilotWeb-Check 网站分析工具Web-Check 提供全面的网站分析功能Web-Check 支持多种部署方式:配置选项开发环境Web-Check 使用多种数据源进行分析 Story of EOLASCII 文本中的换行符问题 Continue – 开源 Copilot 让 Continue 和 Ollama 成…...
【Mac】Auto Mouse Click for Mac(高效、稳定的鼠标连点器软件)软件介绍
软件介绍 Auto Mouse Click for Mac 是一款专为 macOS 平台设计的自动鼠标点击软件,它可以帮助用户自动化重复的鼠标点击操作,从而提高工作效率。以下是这款软件的主要特点和功能: 1.自动化点击操作:Auto Mouse Click 允许用户录…...
javaSE知识点整理总结(下)、MySQL数据库
目录 一、异常 1.常见异常类型 2.异常体系结构 3.异常处理 (1)finally (2)throws 二、JDBC 1.JDBC搭建 2.执行SQL语句两种方法 三、MySQL数据库 1.ddl 2.dml 3.dql (1)字符函数 (…...
Perl入门学习
Perl是一种强大的脚本语言,以其灵活性和文本处理能力而闻名,常用于系统管理、Web开发、生物信息学以及数据处理等领域。以下是Perl语言入门学习的一些关键点: ### 1. Perl简介 - **起源与特点**:Perl由Larry Wall在1987年创建&am…...
2024年7月计划(ue5肉鸽视频完成)
试过重点放在独立游戏上,有个indienova独立游戏团队是全职的,由于他们干了几个月,节奏暂时跟不上,紧张焦虑了。五一时也有点自暴自弃了,实在没必要,按照自己的节奏走即可。精力和时间也有限,放在…...
恢复策略(上)-撤销事务(UNDO)、重做事务(REDO)
一、引言 利用前面所建立的冗余数据,即日志和数据库备份,要将数据库从一个不一致的错误状态恢复到一个一致性状态,还需要相关的恢复策略,不同DBMS的事务处理机制所采用的缓冲区管理策略可能不同,发生故障后的数据库不…...
【鸿蒙学习笔记】位置设置
官方文档:位置设置 目录标题 align:子元素的对齐方式direction:官方文档没懂,看图理解吧 align:子元素的对齐方式 Stack() {Text(TopStart)}.width(90%).height(50).backgroundColor(0xFFE4C4).align(Alignment.TopS…...
41.HOOK引擎设计原理
上一个内容:41.HOOK引擎设计原理 在一个游戏里通过hook来完成各种各样的功能,比如hook点是a、b、c,然后a点会有它自己所需要的hook逻辑,b、c也是有它们自己的hook逻辑(hook逻辑指的是hook之后要做的事)&am…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
