Leetcode 3203. Find Minimum Diameter After Merging Two Trees
- Leetcode 3203. Find Minimum Diameter After Merging Two Trees
- 1. 解题思路
- 2. 代码实现
- 题目链接:3203. Find Minimum Diameter After Merging Two Trees
1. 解题思路
这一题的话算是一个拓扑树的题目?总之就是从树的叶子节点不断向上遍历,不断地删除已访问的叶子节点,并加入更新之后的新的叶子节点,这样我们就能得到树的最大深度,然后在遍历过程中我们考察其任意节点上的当前深度和已有深度的和的最大值,即为经过该节点的最大路径长度,遍历整张图,我们即刻获得整个树的深度和diameter。然后,我们要连接两个图的话,能够获得的最大路径长度就是两个图的深度之和加一。
由此,我们即可完成这道题目了。
2. 代码实现
给出python代码实现如下:
class Solution:def minimumDiameterAfterMerge(self, edges1: List[List[int]], edges2: List[List[int]]) -> int:def dfs(edges):if edges == []:return 0, 0diameter = 0graph = defaultdict(list)deg = defaultdict(int)for u, v in edges:graph[u].append(v)graph[v].append(u)deg[u] += 1deg[v] += 1seen = set()leafs = [u for u in deg if deg[u] == 1]depth = defaultdict(int)while leafs != []:u = leafs.pop(0)if u in seen:continueseen.add(u)for v in graph[u]:if v in seen:continuediameter = max(diameter, depth[v] + depth[u] + 1)depth[v] = max(depth[v], depth[u]+1)deg[v] -= 1if deg[v] == 1:leafs.append(v)return max(depth.values()), diameterdepth1, diameter1 = dfs(edges1)depth2, diameter2 = dfs(edges2)return max(depth1 + depth2 + 1, diameter1, diameter2)
提交代码评测得到:耗时3216ms,占用内存93.4MB。
相关文章:
Leetcode 3203. Find Minimum Diameter After Merging Two Trees
Leetcode 3203. Find Minimum Diameter After Merging Two Trees 1. 解题思路2. 代码实现 题目链接:3203. Find Minimum Diameter After Merging Two Trees 1. 解题思路 这一题的话算是一个拓扑树的题目?总之就是从树的叶子节点不断向上遍历ÿ…...
【抽代复习笔记】24-群(十八):循环群的两道例题
例1:证明: (1)三次交错群A3是循环群,它与(Z3,)同构,其中Z3 {[0],[1],[2]}; (2)G {1,i,-1,-i},G上的代数运算是数的乘法,则G是一个循环群&…...
Linux常见操作问题
1、登录刚创建的用户,无法操作。 注:etc/passwd文件是Linux操作系统中存储用户账户信息的文本文件,包含了系统中所有用户的基本信息,比如用户名、用户ID、用户组ID、用户家目录路径。 注:etc: 这个目录存放所有的系统…...
鲁工小装载机-前后桥传动轴油封更换记录
鲁工装载机 因前后桥大量漏齿轮油,故拆开查看、更换油封 一: 如图圈起来的地方是螺丝和钢板相别,用200的焊接电流用电焊机点开一个豁口后拆除螺丝。 转轴是拆除传动轴后的样子。 这就是拆下来的样子,这玩意插上边那图&…...
商城自动化测试实战 —— 登录+滑块验证
hello大家好,我是你们的小编! 本商城测试项目采取PO模型和数据分离式架构,采用pytestseleniumjenkins结合的方式进行脚本编写与运行,项目架构如下: 1、创建项目名称:code_shopping,创建所需项目…...
8.计算机视觉—增广和迁移
目录 1.数据增广数据增强数据增强的操作代码实现2.微调 迁移学习 Transfer learning(重要的技术)网络结构微调:当目标数据集比源数据集小得多时,微调有助于提高模型的泛化能力。训练固定一些层总结代码实现1.数据增广 CES上的真实故事 有一家做智能售货机的公司,发现他们…...
【Matlab】-- BP反向传播算法
文章目录 文章目录 00 写在前面01 BP算法介绍02 基于Matlab的BP算法03 代码解释 00 写在前面 BP算法可以结合鲸鱼算法、飞蛾扑火算法、粒子群算法、灰狼算法、蝙蝠算法等等各种优化算法一起,进行回归预测或者分类预测。 01 BP算法介绍 BP(Backpropag…...
【Python】 数据分析中的常见统计量:众数
那年夏天我和你躲在 这一大片宁静的海 直到后来我们都还在 对这个世界充满期待 今年冬天你已经不在 我的心空出了一块 很高兴遇见你 让我终究明白 回忆比真实精彩 🎵 王心凌《那年夏天宁静的海》 众数(Mode)是统计学中另…...
Karabiner-Elements 设置mac键盘
软件下载地址: Karabiner-Elements 修改键盘位置,但是重启后,就消失了。 {"description": "New Rule (change left_shiftcaps_lock to page_down, right_shiftcaps_lock to left_commandmission_control)","manip…...
Mybatis实现流程
一,UserDAO 接口定义 首先,定义 UserDAO接口,包含 getList()方法,定义类型为List<User>: package dao;import model.User; import java.util.List;public interface UserDAO {List<User> getList(); }二,…...
简单的springboot整合activiti5-serviceImpl部分(1)
简单的springboot整合activiti5.22.0-serviceImpl部分(1) 原来的流程serviceImpl部分代码过多,所以此处单独记录一下,此处记录的是serviceImpl第一部分代码 package cn.git.workflow.service.impl;import cn.git.cache.api.BaseCacheApi; import cn.gi…...
snat、dnat和firewalld
目录 概述 SNAT源地址转换 DANT目的地址转换 抓包 firewalld 端口管理 概述 snat :源地址转换 内网——外网 内网ip转换成可以访问外网的ip 也就是内网的多个主机可以只有一个有效的公网ip地址访问外部网络 DNAT:目的地址转发 外部用户&#…...
[数据集][目标检测]鸡蛋缺陷检测数据集VOC+YOLO格式2918张2类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2918 标注数量(xml文件个数):2918 标注数量(txt文件个数):2918 标注…...
前后端防重复提交
数据重复提交是一个大忌,会带来无效数据,应该在前端和后端都建议检测防范。 前端一般是按钮按下触发数据提交,如果用户鼠标操作习惯不好,或者鼠标或系统设置问题会导致鼠标连击,如果前端不做相关处理,可能会…...
JVM专题八:JVM如何判断可回收对象
在JVM专题七:JVM垃圾回收机制中提到JVM的垃圾回收机制是一个自动化的后台进程,它通过周期性地检查和回收不可达的对象(垃圾),帮助管理内存资源,确保应用程序的高效运行。今天就让我们来看看JVM到底是怎么定…...
binary_cross_entropy_with_logits函数的参数设定
binary_cross_entropy_with_logits 该函数参数: logits (Tensor) - 输入预测值。其数据类型为float16或float32。 label (Tensor) - 输入目标值,shape与 logits 相同。数据类型为float16或float32。 weight (Tensor,可选) - 指定每个批次二…...
Python 面试【★★★★★】
欢迎莅临我的博客 💝💝💝,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...
C# StringBuilder
以下是一些基本的 StringBuilder 使用方法:创建 StringBuilder 实例:追加字符串:插入字符串:删除字符串:替换字符串:清空 StringBuilder:转换 StringBuilder 为字符串:使用容量&…...
4个文章生成器免费版分享,让文章创作更轻松便捷
在当今这个信息飞速传播的时代,文章创作的重要性愈发凸显。无论是从事内容创作的专业人士,还是偶尔需要撰写文章的普通大众,都希望能更高效地完成文章创作任务。而在实际操作中,我们常常会遇到思路卡顿、没有创作灵感的问题。今天…...
redis-cluster(集群模式搭建)
redis中间件版本: redis-5.0.5环境介绍 这里使用服务器数量3,分别为172.0.0.1,172.0.0.2,172.0.0.3,每台机器redis节点数量2个,共6个redis节点构成redis-cluster模式。编译安装包 在172.0.0.1的机器上进入安装目录 cd …...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
