pytorch nn.Embedding 用法和原理
nn.Embedding 是 PyTorch 中的一个模块,用于将离散的输入(通常是词或子词的索引)映射到连续的向量空间。它在自然语言处理和其他需要处理离散输入的任务中非常常用。以下是 nn.Embedding 的用法和原理。
用法
初始化 nn.Embedding
nn.Embedding 的初始化需要两个主要参数:
- num_embeddings:字典的大小,即输入的最大索引值 + 1。
- embedding_dim:每个嵌入向量的维度。
此外,还有一些可选参数,如 padding_idx、max_norm、norm_type、scale_grad_by_freq 和 sparse。
import torch
import torch.nn as nn# 创建一个 Embedding 层
num_embeddings = 10 # 词汇表大小
embedding_dim = 3 # 嵌入向量的维度
embedding_layer = nn.Embedding(num_embeddings, embedding_dim)
输入和输出
nn.Embedding 的输入是一个包含索引的长整型张量,输出是对应的嵌入向量。
# 示例输入
input_indices = torch.LongTensor([1, 2, 3, 4])
output_vectors = embedding_layer(input_indices)
print(output_vectors)
示例代码
以下是一个完整的示例代码,展示了如何使用 nn.Embedding 层:
import torch
import torch.nn as nn# 创建 Embedding 层
num_embeddings = 10 # 词汇表大小
embedding_dim = 3 # 嵌入向量的维度
embedding_layer = nn.Embedding(num_embeddings, embedding_dim)# 示例输入
input_indices = torch.LongTensor([1, 2, 3, 4])# 获取嵌入向量
output_vectors = embedding_layer(input_indices)
print("Input indices:", input_indices)
print("Output vectors:", output_vectors)
原理
nn.Embedding 层的本质是一个查找表,它将输入的每个索引映射到一个固定大小的向量。这个映射表在初始化时会随机生成,然后在训练过程中通过反向传播进行优化。
主要步骤
- 初始化:在初始化时,nn.Embedding 会创建一个大小为 (num_embeddings, embedding_dim)的权重矩阵。这些权重是嵌入层的参数,会在训练过程中更新。
- 前向传播:在前向传播过程中,nn.Embedding 层会将输入的索引映射到权重矩阵的相应行,从而得到对应的嵌入向量。
- 反向传播:在训练过程中,嵌入层的权重矩阵会根据损失函数的梯度进行更新。这使得嵌入向量能够捕捉到输入的语义信息。
参数解释
- padding_idx:如果指定了 padding_idx,则该索引的嵌入向量在训练过程中不会被更新。通常用于处理填充(padding)标记。
- max_norm:如果指定了 max_norm,则会对每个嵌入向量的范数进行约束,使其不超过 max_norm。
- norm_type:用于指定范数的类型,默认是2范数。
- scale_grad_by_freq:如果设置为 True,则会根据输入中每个词的频率缩放梯度。
- sparse:如果设置为 True,则使用稀疏梯度更新,适用于大词汇表的情况。
原理解释
- 查找表:nn.Embedding 的核心是一个查找表,其大小为 (num_embeddings,embedding_dim),每一行代表一个词或索引的嵌入向量。
- 前向传播:在前向传播中,输入的索引被用来查找嵌入向量。假设输入是 [1, 2, 3],则输出是权重矩阵中第1、第2和第3行的向量。
- 反向传播:在反向传播中,嵌入向量的梯度会根据损失函数进行计算,并用于更新权重矩阵。
通过这种方式,嵌入向量能够在训练过程中不断调整,使得相似的输入索引(例如语义相似的词)在向量空间中更接近,从而捕捉到输入的语义信息。
总结
nn.Embedding 是 PyTorch 中处理离散输入的一个非常强大且常用的工具。通过将离散索引映射到连续向量空间,并在训练过程中优化这些向量,nn.Embedding 能够捕捉到输入的丰富语义信息。这对于自然语言处理等任务来说是非常重要的。
相关文章:
pytorch nn.Embedding 用法和原理
nn.Embedding 是 PyTorch 中的一个模块,用于将离散的输入(通常是词或子词的索引)映射到连续的向量空间。它在自然语言处理和其他需要处理离散输入的任务中非常常用。以下是 nn.Embedding 的用法和原理。 用法 初始化 nn.Embedding nn.Embed…...
Python中常用的有7种值(数据)的类型及type()语句的用法
目录 0.Python中常用的有7种值(数据)的类型Python中的数据类型主要有:Number(数字)、Boolean(布尔)、String(字符串)、List(列表)、Tuple…...
某配送平台未授权访问和弱口令(附赠nuclei默认密码验证脚本)
找到一个某src的子站,通过信息收集插件,发现ZABBIX-监控系统,可以日一下 使用谷歌搜索历史漏洞:zabbix漏洞 通过目录扫描扫描到后台,谷歌搜索一下有没有默认弱口令 成功进去了,挖洞就是这么简单 搜索文章还…...
01.总览
目录 简介Course 1: Natural Language Processing with Classification and Vector SpaceWeek 1: Sentiment Analysis with Logistic RegressionWeek 2: Sentiment Analysis with Nave BayesWeek 3: Vector Space ModelsWeek 4: Machine Translation and Document Search Cours…...
Linux换源
前言 安装完Linux系统,尽量更换源以提高安装软件的速度。 步骤 备份原始源列表sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak修改sources.list sudo vim /etc/apt/sources.list将内容替换成对应的源 **PS:清华源地址:https:…...
【高考志愿】 化学工程与技术
目录 一、专业概述 二、就业前景 三、就业方向 四、报考注意 五、专业发展与深造 六、化学工程与技术专业排名 七、总结 一、专业概述 化学工程与技术专业,这是一门深具挑战与机遇的综合性学科。它融合了工程技术的实用性和化学原理的严谨性,为毕…...
2024上半年网络与数据安全法规政策、国标、报告合集
事关大局,我国数据安全立法体系已基本形成并逐步细化。数据基础制度建设事关国家发展和安全大局,数据安全治理贯穿构建数据基础制度体系全过程。随着我国数字经济建设进程加快,数据安全立法实现由点到面、由面到体加速构建,目前已…...
基于SpringBoot扶农助农政策管理系统设计和实现(源码+LW+调试文档+讲解等)
💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟 感兴趣的可以先收藏起来,…...
淘宝商铺电话怎么获取?使用爬虫工具采集
访问淘宝商铺是一个合法的行为,你可以使用爬虫工具来提取淘宝商铺的信息。下面是一个基本的Python程序示例,用于使用爬虫工具访问淘宝商铺: import requestsdef get_store_info(store_id):url fhttps://shop{id}.taobao.comresponse reque…...
ModStart:开源免费的PHP企业网站开发建设管理系统
大家好!今天我要给大家介绍一款超级强大的开源工具——ModStart,它基于Laravel框架,是PHP企业网站开发建设的绝佳选择! 为什么选择ModStart? 模块化设计:ModStart采用模块化设计,内置了众多基…...
npm安装依赖报错——npm ERR gyp verb cli的解决方法
1. 问题描述 1.1 npm安装依赖报错——npm ERR! gyp verb cli npm MARN deprecated axiosQ0.18.1: critical security vuLnerability fixed in v0.21.1. For more information, npm WARN deprecated svg001.3.2: This SVGO version is no Longer supported. upgrade to v2.x.x …...
公网环境使用Potplayer远程访问家中群晖NAS搭建的WebDAV听歌看电影
文章目录 前言1 使用环境要求:2 配置webdav3 测试局域网使用potplayer访问webdav4 内网穿透,映射至公网5 使用固定地址在potplayer访问webdav 前言 本文主要介绍如何在Windows设备使用potplayer播放器远程访问本地局域网的群晖NAS中的影视资源ÿ…...
Forecasting from LiDAR via Future Object Detection
Forecasting from LiDAR via Future Object Detection 基础信息 论文:cvpr2022paper https://openaccess.thecvf.com/content/CVPR2022/papers/Peri_Forecasting_From_LiDAR_via_Future_Object_Detection_CVPR_2022_paper.pdfgithub:https://github.co…...
【unity笔记】五、UI面板TextMeshPro 添加中文字体
Unity 中 TextMeshPro不支持中文字体,下面为解决方法: 准备字体文件,从Windows系统文件的Fonts文件夹里拖一个.ttf文件(C盘 > Windows > Fonts ) 准备字库文件,新建一个文本文件,命名为“字库”&…...
如何在Windows 11上设置默认麦克风和相机?这里有详细步骤
如果你的Windows 11计算机上连接了多个麦克风或网络摄像头,并且希望自动使用特定设备,而不必每次都在设置中乱动,则必须将首选设备设置为默认设备。我们将向你展示如何做到这一点。 如何在Windows 11上更改默认麦克风 有两种方法可以将麦克…...
Flutter循序渐进==>数据结构(列表、映射和集合)和错误处理
导言 填鸭似的教育确实不行,我高中时学过集合,不知道有什么用,毫无兴趣,等到我学了一门编程语言后,才发现集合真的很有用;可以去重,可以看你有我没有的,可以看我有你没有的…...
泛微E9开发 限制明细表列的值重复
限制明细表列的值重复 1、需求说明2、实现方法3、扩展知识点3.1 修改单个字段值(不支持附件类型)3.1.1 格式3.1.2 参数3.1.3 案例 3.2 获取明细行所有行标示3.2.1 格式3.2.2 参数说明 1、需求说明 限制明细表的“类型”字段,在同一个流程表单…...
magicapi导出excel
参考:Hutool参考文档 response模块 | magic-api import response;import java.util.ArrayList; import java.util.LinkedHashMap; import java.util.List; import java.util.Map;import cn.hutool.core.collection.CollUtil; import cn.hutool.core.date.DateUtil; …...
【秋招突围】2024届秋招笔试-科大讯飞笔试题-03-三语言题解(Java/Cpp/Python)
🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系计划跟新各公司春秋招的笔试题 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📧 清隆这边…...
springboot是否可以代替spring
Spring Boot不能直接代替Spring,但它是Spring框架的一个扩展和增强,提供了更加便捷和高效的开发体验。以下是关于Spring Boot和Spring关系的详细解释: Spring框架: Spring是一个广泛应用的开源Java框架,提供了一系列模…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
