当前位置: 首页 > news >正文

16、matlab求导、求偏导、求定积分、不定积分、数值积分和数值二重积分

0)前言

在MATLAB中,对函数进行不同形式的求导、求积分操作是非常常见的需求,在工程、科学等领域中经常会用到。以下是关于求导、求积分以及数值积分的简介:

  1. 求导:在MATLAB中可以使用diff函数对函数进行求导操作。diff函数有多种用法,可以求一阶、高阶导数,也可以求偏导数。例如,求函数f(x)的一阶导数可以使用diff(f, x),求函数f(x, y)对x的偏导数可以使用diff(f, x)

  2. 求定积分和不定积分:在MATLAB中可以使用int函数对函数进行定积分和不定积分的计算。int函数可以对输入的表达式进行积分计算。例如,求函数f(x)在区间[a, b]上的定积分可以使用int(f, a, b),求函数f(x)的不定积分可以使用int(f, x)

  3. 数值积分:在MATLAB中,可以使用integral函数进行数值积分计算。integral函数可以对给定的函数进行数值积分计算,常用于无法通过解析方法得到积分的情况。例如,对函数f(x)在区间[a, b]上进行数值积分可以使用integral(@(x) f(x), a, b)

  4. 数值二重积分:在MATLAB中,可以使用integral2函数进行数值二重积分计算。integral2函数可以对给定的二元函数进行数值积分计算,常用于求解二维区域上的积分。例如,对二元函数f(x, y)在区域D上进行数值二重积分可以使用integral2(@(x, y) f(x, y), x_min, x_max, y_min, y_max)

以上是对MATLAB中求导、求积分操作的简介,通过灵活使用这些函数,可以方便地进行各种类型的导数和积分计算。值得注意的是,在进行数值积分时,可以根据具体情况选择适合的数值积分方法,以获得更精确和高效的计算结果。

1、matlab求导,diff()函数

1)一阶导数

语法:diff(f(x)):求一阶导数 //diff(f(x),n):求n阶导数(n为具体正整数)

以函数(cos(x)+sin(x)-x^2)的一阶导数为例

一阶导数代码:

yms x;%声明符号变量x
f(x)=cos(x)+sin(x)-x^2;%定义原式子
dy=diff(f(x))%求一阶导数dy =cos(x) - 2*x - sin(x)

2)n阶倒数

以函数(cos(x)+sin(x)-x^2)二三阶倒数为例

二三阶导数代码:

syms x;%声明符号变量x
f(x)=cos(x)+sin(x)-x^2;%定义原式子
dy1=diff(f(x),2)
% pretty(dy1)
dy2=diff(f(x),3)dy1 =- cos(x) - sin(x) - 2dy2 =sin(x) - cos(x)

2、matlab求偏导,diff()函数

语法:diff(f(x)):求一阶导数 //diff(f(x),n):求n阶导数(n为具体正整数)

以函数(f(x1,x2)=sin(x1)+exp(x2))求解x1和x2偏倒为例

1)一阶偏导

x1求偏导代码:

syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
%求一阶偏导
dy1=diff(f(x1,x2),x1)dy1 =cos(x1)

x2求偏导代码:

syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
dy2=diff(f(x1,x2),x2)dy2 =exp(x2)

2)n阶偏导

x1二阶偏导代码:

syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
dy3=diff(f(x1,x2),x1,2)dy3 =-sin(x1)

 x2三阶偏导代码:

syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
dy4=diff(f(x1,x2),x2,3)dy4 =exp(x2)

3、matlab求积分,int()函数

1)不定积分求解

语法:牛顿——莱布尼兹公式求解积分

代码:

syms x;%声明变量x
y1=x^2;%定义原式
fy1=int(y1,x)%不定积分fy1 =x^3/3

2)定积分求解 

代码:

syms x;%声明变量x
y1=x^2;%定义原式
% fy1=int(y1,x)%不定积分
fy2=int(y1,x,0,1)%定积分fy2 =1/3syms x;%声明变量x
y1=x^2;%定义原式
% fy1=int(y1,x)%不定积分
% fy2=int(y1,x,0,1)%定积分
fy3=int(y1,x,-inf,+inf)fy3 =Inf

 4、数值积分

1)梯形法计算积分 trapz()函数

语法:I=trapz(x,y) %适用于被积函数为离散数据

代码:

format long%显示格式设置
fy=@(x)sin(x)./x%@句柄的用法
x1=pi/6:pi/100:pi;
y1=fy(x1);
%绘图
bar(y1)
%定积分
s1=trapz(x1,y1)fy =包含以下值的 function_handle:@(x)sin(x)./xs1 =1.336217975152237

视图效果:

 2)基于变步长辛普森计算积分

语法:[I,n]=quad(‘fname’,a,b,Tol,trace)%I积分值/n积分函数调用次数

参数介绍fname:被积函数名 a,b积分界限 TOL精度 trace是否展现积分过程

基于变步长辛普森计算积分与梯形法计算积分对比代码:

fy=@(x)sin(x)./x%被积函数
s=quad(fy,pi/6,pi,0.00001,1)%变步长辛普森计算积分
x1=pi/6:pi/100:pi;
y1=fy(x1);
s1=trapz(x1,y1)%梯形法计算积分fy =包含以下值的 function_handle:@(x)sin(x)./x9     0.5235987756     7.10994777e-01     0.619018804711     1.2345935530     1.19600432e+00     0.626190692913     2.4305978762     7.10994777e-01     0.0910383671s =1.336247864730292s1 =1.336217975152237

 5、数值二重积分 dblquad()函数

语法:I=dblquad(f,a,b,c,d,tol,method),求f(x,y)在[a,b]、[c,d]区域上的二重积分

TOL精度 Method:计算一维积分(quad/quadl) 

代码:

 f=@(x,y)exp(x.^2).*sin(x.^2+y.^2)I1=dblquad(f,-2,2,-1,1)I2=dblquad(f,-2,2,-1,1,1e-9,'quadl')I3=dblquad(f,-2,2,-1,1,1e-9,'quad')%默认f =包含以下值的 function_handle:@(x,y)exp(x.^2).*sin(x.^2+y.^2)I1 =-9.400793312509709I2 =-9.400792842118586I3 =-9.400792842296315

 6、数值积分 integral()函数

语法:q = integral(fun,xmin,xmax,Name,Value)

代码:

fun = @(x) exp(-x.^2).*log(x).^2;
q = integral(fun,0,Inf)
q1 = integral(fun,0,Inf,'RelTol',1e-9)q =1.947522220295560q1 =1.947522180314255

 7、二重积分 integral2()函数

语法:q = integral2(fun,xmin,xmax,ymin,ymax,Name,Value)

代码:

fun = @(x,y) 1./( sqrt(x + y) .* (1 + x + y).^2 );
q1= integral2(fun,0,1,0,1)
q2= integral2(fun,0,1,0,1,'RelTol',1e-9)q1 =0.369530192486637q2 =0.369530180500556

8、总结 

在MATLAB中,求导、求偏导、求定积分、不定积分、数值积分和数值二重积分是信号处理、数学建模等领域中常用的操作。以下是对这些操作的总结:

  1. 求导:

    • 一阶导数:使用diff函数。
    • 多阶导数:连续多次使用diff函数。
    • 求偏导数:指定对哪个变量求偏导数。
  2. 求定积分和不定积分:

    • 定积分:使用int函数,指定积分上下限。
    • 不定积分:使用int函数,只指定被积分的变量。
  3. 数值积分:

    • 一维数值积分:使用integral函数,指定被积函数和积分区间。
    • 二维数值积分:使用integral2函数,指定被积函数和积分区域。
  4. 注意事项:

    • 在使用数值积分函数时,可以指定积分精度和其他参数,以获得更精确的结果。
    • 对于复杂函数或区域,可以使用数值积分来近似求解积分值。
    • 在处理数值积分结果时,要注意结果的有效性和精度,可以使用MATLAB的调试工具进行验证。

综上所述,MATLAB提供了丰富的函数和工具,可以方便地进行导数、积分和数值积分等操作。这些操作在数学建模、信号处理、科学计算等领域中具有重要的应用意义,能够帮助用户进行数据分析、模拟和预测等工作。在实际应用中,根据具体需求选择合适的函数和方法,以实现准确、高效的数据处理和计算。

相关文章:

16、matlab求导、求偏导、求定积分、不定积分、数值积分和数值二重积分

0)前言 在MATLAB中,对函数进行不同形式的求导、求积分操作是非常常见的需求,在工程、科学等领域中经常会用到。以下是关于求导、求积分以及数值积分的简介: 求导:在MATLAB中可以使用diff函数对函数进行求导操作。diff…...

MySQL 9.0创新版发布!功能又进化了!

作者:IT邦德 中国DBA联盟(ACDU)成员,10余年DBA工作经验, Oracle、PostgreSQL ACE CSDN博客专家及B站知名UP主,全网粉丝10万 擅长主流Oracle、MySQL、PG、高斯及Greenplum备份恢复, 安装迁移,性能优化、故障…...

后端系统的安全性

后端系统的安全性 后端系统的安全性是任何Web应用或服务的核心组成部分,它涉及保护数据、用户隐私以及系统免受恶意攻击。以下是后端安全的一些关键点: 认证和授权:确保只有经过身份验证的用户才能访问特定资源。这通常包括使用用户名/密码…...

.net 百度翻译接口核心类

百度翻译api :http://developer.baidu.com/wiki/index.php?title帮助文档首页/百度翻译/翻译AP 核心翻译类 using System; using System.Collections.Generic; using System.Linq; using System.Text; using Newtonsoft.Json; using System.Net; using System.I…...

安卓应用开发学习:通过腾讯地图SDK实现定位功能

一、引言 这几天有些忙,耽误了写日志,但我的学习始终没有落下,有空我就会研究《 Android App 开发进阶与项目实战》一书中定位导航方面的内容。在我的手机上先后实现了“获取经纬度及地理位置描述信息”和“获取导航卫星信息”功能后&#x…...

iptable精讲

SNAT策略 SNAT策略的典型应用环境 局域网主机共享单个公网IP地址接入Internet SNAT策略的原理 源地址转换,Source Network Address Translantion 修改数据包的源地址 部署SNAT策略 1.准备二台最小化虚拟机修改主机名 主机名:gw 主机名&#xff1…...

2024 年如何构建 AI 软件

人工智能 (AI) 是当今 IT 行业最热门的话题,受到大型科技公司、大型企业和投资者的青睐。如果有人不参与 AI,他们就出局了。虽然“AI 泡沫”一词尚未公开使用,但街上的每个人都可能听说过 AI 将取代我们的工作(可能不会&#xff0…...

Python实战,桌面小游戏,剪刀石头布

注意:本文的下载教程,与以下文章的思路有相同点,也有不同点,最终目标只是让读者从多维度去熟练掌握本知识点。 下载教程: Python项目开发实战_桌面小游戏-剪刀石头布_编程案例解析实例详解课程教程.pdf 创建一个基于Python的桌面小游戏“剪刀石头布”是一个很好的编程实践…...

Hadoop权威指南-读书笔记-01-初识Hadoop

Hadoop权威指南-读书笔记 记录一下读这本书的时候觉得有意思或者重要的点~ 第一章—初识Hadoop Tips: 这个引例很有哲理嘻嘻😄,道出了分布式的灵魂。 1.1 数据!数据! 这一小节主要介绍了进入大数据时代,面…...

HttpServletResponse设置headers返回,发现headers中缺少“Content-Length“和“Content-Type“两个参数。

业务中需要将用httpUtils请求返回的headers全部返回,塞到HttpServletResponse中,代码如下: HttpServletResponse response;// 返回headers Arrays.stream(httpResponse.getHeaders()).forEach(header -> response.setHeader(header.getNa…...

GraphPad Prism生物医学数据分析软件下载安装 GraphPad Prism轻松绘制各种图表

Prism软件作为一款功能强大的生物医学数据分析与可视化工具,其绘图功能尤为突出。该软件不仅支持绘制基础的图表类型,如直观明了的柱状图、展示数据分布的散点图,以及描绘变化趋势的曲线图,更能应对复杂的数据呈现需求&#xff0c…...

7/1 uart

uart4.c #include "uart4.h"//UART4_RX > PB2 //UART4_TX > PG11char rebuf[51] {0}; //rcc/gpio/uart4初始化 void hal_uart4_init() {/********RCC章节初始化*******///1.使能GPIOB组控制器 MP_AHB4ENSETR[1] 1RCC->MP_AHB4ENSETR | (0x1 << 1)…...

zdppy_api+vue3+antd开发前后端分离的预加载卡片实战案例

后端代码 import api import upload import timesave_dir "uploads"async def rand_content(request):key api.req.get_query(request, "key")time.sleep(0.3)return api.resp.success(f"{key} " * 100)app api.Api(routes[api.resp.get(&qu…...

别小看手机导航,这些隐藏功能大部分人可能都不知道

在科技日新月异的今天&#xff0c;手机导航已经成为我们日常生活中不可或缺的一部分。它不仅仅是指引我们前往目的地的工具&#xff0c;更隐藏着许多黑科技功能&#xff0c;极大地丰富了我们的出行体验。 今天&#xff0c;让我们一起探索手机导航中那些鲜为人知却大有用处的隐…...

Lua实现链表(面向对象应用)

Lua实现面向对象 面向对象核心三要素Lua面向对象大致原理面向对象示例继承与多态示例 面向对象核心三要素 1.封装&#xff1a;对一个事物的抽象为一些属性和行为动作的集合&#xff0c;封装将属性和行为动作&#xff08;操作数据的方法&#xff09;绑定在一起&#xff0c;并隐藏…...

每隔一个小时gc一次的问题

原文地址https://www.cnblogs.com/jiangxinlingdu/p/7581064.html 设置一下这个 -XX:ExplicitGCInvokesConcurrent 或 -XXExplicitGCInvokesConcurrentAndUnloadsClasses 并且检查一下&#xff0c;并下面的值设置变大 java.rmi.dgc.leaseValue sun.rmi.dgc.client.gcInterv…...

VBA数据库解决方案第十二讲:如何判断数据库中数据表是否存在

《VBA数据库解决方案》教程&#xff08;版权10090845&#xff09;是我推出的第二套教程&#xff0c;目前已经是第二版修订了。这套教程定位于中级&#xff0c;是学完字典后的另一个专题讲解。数据库是数据处理的利器&#xff0c;教程中详细介绍了利用ADO连接ACCDB和EXCEL的方法…...

五、Spring IoCDI ★ ✔

5. Spring IoC&DI 1. IoC & DI ⼊⻔1.1 Spring 是什么&#xff1f;★ &#xff08;Spring 是包含了众多⼯具⽅法的 IoC 容器&#xff09;1.1.1 什么是容器&#xff1f;1.1.2 什么是 IoC&#xff1f;★ &#xff08;IoC: Inversion of Control (控制反转)&#xff09;总…...

计算机网络八股文

计算机网络体系架构&#xff1f; OSI结构&#xff1a;理论上的 7应用层&#xff1a;定义了应用进程间通信和交互的规则&#xff0c;常见协议有HTTP、SFTP、DNS、WebSocket6表示层&#xff1a;数据的表示、安全、压缩。确保一个系统的应用层所发消息能被另一个系统的应用层读取…...

科普文:一文搞懂jvm原理(四)运行时数据区

概叙 科普文&#xff1a;一文搞懂jvm(一)jvm概叙-CSDN博客 科普文&#xff1a;一文搞懂jvm原理(二)类加载器-CSDN博客 科普文&#xff1a;一文搞懂jvm原理(三)执行引擎-CSDN博客 前面我们介绍了jvm&#xff0c;jvm主要包括两个子系统和两个组件&#xff1a; Class loader(类…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...

Linux中《基础IO》详细介绍

目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改&#xff0c;实现简单cat命令 输出信息到显示器&#xff0c;你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...