当前位置: 首页 > news >正文

双向广搜——AcWing 190. 字串变换

双向广搜

定义

双向广度优先搜索(Bi-directional Breadth-First Search, Bi-BFS)是一种在图或树中寻找两点间最短路径的算法。与传统的单向广度优先搜索相比,它从起始点和目标点同时开始搜索,从而有可能显著减少搜索空间,提高搜索效率,特别是在处理大规模图或者寻找最短路径时更为明显。

运用情况

  1. 最短路径问题:当需要快速找到两个节点间的最短路径时,特别是路径非常长或者图非常大的情况下,双向BFS比单向BFS更高效。
  2. 有界搜索问题:在一些问题中,比如迷宫求解,我们知道起始点和终点,且关心的是尽快相遇而不是探索整个图,这时双向BFS非常适用。
  3. 游戏AI:在某些游戏中,为了快速计算玩家与目标之间的最短路径,可以使用双向BFS。
  4. 网络路由:在网络通信中寻找最短的路由路径时,也可以应用此算法。

注意事项

  1. 相遇判断:当两个搜索的前沿相遇时,需要确保正确识别并停止搜索,避免重复计算。
  2. 路径合并:找到相遇点后,需要合并两个方向的路径以得到完整的最短路径。
  3. 空间复杂度:虽然可以减少搜索的深度,但同时维护两个队列(或集合)可能会增加额外的空间消耗。
  4. 平衡问题:为了优化性能,需要尽量保持两个方向的搜索速度平衡,可以通过调整每一步扩展的节点数来实现。

解题思路

  1. 初始化:设置两个队列,一个用于存储从起点出发的节点,另一个用于存储从终点出发的节点。同时,为两个方向的节点分别标记已访问状态,防止重复访问。
  2. 广度优先遍历:同时进行两个方向的广度优先遍历。每次遍历时,从两个队列中各取出一层的节点进行扩展,并将新扩展的节点加入到相应的队列中。
  3. 检查相遇:在扩展节点的过程中,检查是否有节点已经被另一个方向访问过。如果发现这样的节点,说明找到了一条从起点到终点的路径,此时停止搜索。
  4. 路径合并:从相遇节点开始,逆向追踪标记,直到回到起点或终点,这样就可以得到完整的最短路径。
  5. 优化策略:根据具体问题,可能需要考虑启发式信息、队列管理策略等进一步优化搜索过程。

AcWing 190. 字串变换

题目描述

190. 字串变换 - AcWing题库

运行代码

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <unordered_map>using namespace std;const int N = 6;int n;
string A, B;
string a[N], b[N];int extend(queue<string>& q, unordered_map<string, int>&da, unordered_map<string, int>& db, string a[N], string b[N])
{int d = da[q.front()];while (q.size() && da[q.front()] == d){auto t = q.front();q.pop();for (int i = 0; i < n; i ++ )for (int j = 0; j < t.size(); j ++ )if (t.substr(j, a[i].size()) == a[i]){string r = t.substr(0, j) + b[i] + t.substr(j + a[i].size());if (db.count(r)) return da[t] + db[r] + 1;if (da.count(r)) continue;da[r] = da[t] + 1;q.push(r);}}return 11;
}int bfs()
{if (A == B) return 0;queue<string> qa, qb;unordered_map<string, int> da, db;qa.push(A), qb.push(B);da[A] = db[B] = 0;int step = 0;while (qa.size() && qb.size()){int t;if (qa.size() < qb.size()) t = extend(qa, da, db, a, b);else t = extend(qb, db, da, b, a);if (t <= 10) return t;if ( ++ step == 10) return -1;}return -1;
}int main()
{cin >> A >> B;while (cin >> a[n] >> b[n]) n ++ ;int t = bfs();if (t == -1) puts("NO ANSWER!");else cout << t << endl;return 0;
}

代码思路

  1. 输入处理:首先读取起始字符串A和目标字符串B,然后逐行读取变换规则(子串A[i]到B[i]的变换)直到文件结束。

  2. 双端BFS:算法采用了双端BFS策略,即同时从字符串A和B出发,试图找到两者之间的最短变换路径。使用两个队列qaqb分别存储从A和B出发的可能状态,以及两个哈希表dadb记录每个状态到起点的距离。

  3. 扩展函数:定义了extend函数,用于从一个队列中取出所有状态并尝试应用所有变换规则,扩展出新的状态加入队列,并更新距离哈希表。这个函数是BFS的关键,它确保每次扩展只增加一步操作。

  4. 主循环:在主循环中交替从两端扩展,直到找到变换路径或者达到最大步数限制。

  5. 结果判断:最后,根据搜索结果输出最少步数或"No Answer!"。

改进思路

  1. 减少重复计算:当前代码在扩展状态时,对每个状态与每条规则都进行了匹配尝试,这可能会导致大量重复计算,尤其是在规则较多或字符串较长时。可以通过维护一个已访问状态的集合来避免重复探索相同的状态。

  2. 规则预处理:为了提高效率,可以在开始搜索之前对变换规则进行预处理,比如建立一个从子串到新子串的直接映射,这样在扩展状态时可以直接查找而无需遍历所有规则。

  3. 剪枝:在双向BFS中,当从两端搜索的边界状态的距离之和已经大于当前最小步数时,可以提前终止搜索,这是一种有效的剪枝策略。

  4. 内存使用优化:考虑使用更节省空间的数据结构,比如使用滚动数组或者动态调整容器大小来减少内存占用。

相关文章:

双向广搜——AcWing 190. 字串变换

双向广搜 定义 双向广度优先搜索&#xff08;Bi-directional Breadth-First Search, Bi-BFS&#xff09;是一种在图或树中寻找两点间最短路径的算法。与传统的单向广度优先搜索相比&#xff0c;它从起始点和目标点同时开始搜索&#xff0c;从而有可能显著减少搜索空间&#x…...

工商业光伏项目如何快速开发?

一、前期调研与规划 1、屋顶资源评估&#xff1a;详细测量屋顶面积、承重能力及朝向&#xff0c;利用光伏业务管理软件进行日照分析和发电量预测&#xff0c;确保项目可行性。 2、政策与补贴研究&#xff1a;深入了解当地政府对工商业光伏项目的政策支持和补贴情况&#xff0…...

Kafka入门-分区及压缩

一、生产者消息分区 Kafka的消息组织方式实际上是三级结构&#xff1a;主题-分区-消息。主题下的每条消息只会保存在某一个分区中&#xff0c;而不会在多个分区中被保存多份。 分区的作用就是提供负载均衡的能力&#xff0c;或者说对数据进行分区的主要原因&#xff0c;就是为…...

被⽹络罪犯利⽤的5⼤ChatGPT越狱提⽰

⾃ChatGPT发布的近18个月以来&#xff0c;⽹络罪犯们已经能够利⽤⽣成式AI进⾏攻击。OpenAI在其内容政策中制定了限制措施&#xff0c;以阻⽌⽣成恶意内容。作为回应&#xff0c;攻击者们创建了⾃⼰的⽣成式AI平台&#xff0c;如 WormGPT和FraudGPT&#xff0c;并且他们还分享了…...

AVR晶体管测试仪开源制作与验证

AVR晶体管测试仪开源制作与验证 &#x1f4cd;原项目地址&#xff1a;https://www.mikrocontroller.net/articles/AVR_Transistortester github地址&#xff1a;https://github.com/Mikrocontroller-net/transistortester &#x1f388;EasyEDA项目地址&#xff1a;https://osh…...

头条系统-05-延迟队列精准发布文章-概述添加任务(db和redis实现延迟任务)、取消拉取任务定时刷新(redis管道、分布式锁setNx)...

文章目录 延迟任务精准发布文章 1)文章定时发布2)延迟任务概述 2.1)什么是延迟任务2.2)技术对比 2.2.1)DelayQueue2.2.2)RabbitMQ实现延迟任务2.2.3)redis实现 3)redis实现延迟任务4)延迟任务服务实现 4.1)搭建heima-leadnews-schedule模块4.2)数据库准备4.3)安装redis4.4)项目…...

不同系统间数据交换要通过 api 不能直接数据库访问

很多大数据开发提供数据给外部系统直接给表结构&#xff0c;这是不好的方式。在不同系统间进行数据交换时&#xff0c;通过API&#xff08;应用程序编程接口&#xff09;而非直接访问数据库是现代系统集成的一种最佳实践。 目录 为什么要通过API进行数据交换如何通过API进行数据…...

深度探索“目录名称无效“:原因、解决方案与最佳实践

目录名称无效&#xff1a;现象背后的秘密 在日常使用电脑或移动设备时&#xff0c;我们时常会遇到“目录名称无效”的错误提示&#xff0c;这一提示仿佛是一道无形的屏障&#xff0c;阻断了我们与重要数据的联系。从本质上讲&#xff0c;“目录名称无效”意味着系统无法识别或…...

open3d基础使用-简单易懂

Open3D是一个开源库&#xff0c;主要用于快速开发处理3D数据的软件。它提供了丰富的数据结构和算法&#xff0c;支持点云、网格和RGB-D图像等多种3D数据的处理。以下是对Open3D基础使用的详细归纳和说明&#xff1a; 一、安装Open3D Open3D可以通过Python的包管理器pip进行安…...

【前端】HTML+CSS复习记录【5】

文章目录 前言一、padding、margin、border&#xff08;边框边距&#xff09;二、样式优先级三、var&#xff08;使用 CSS 变量更改多个元素样式&#xff09;四、media quary&#xff08;媒体查询&#xff09;系列文章目录 前言 长时间未使用HTML编程&#xff0c;前端知识感觉…...

三分钟看懂SMD封装与COB封装的差异

全彩LED显示屏领域中&#xff0c;COB封装于SMD封装是比较常见的两种封装方式&#xff0c;SMD封装产品主要有常规小间距以及室内、户外型产品&#xff0c;COB封装产品主要集中在小间距以及微间距系列产品中&#xff0c;今天跟随COB显示屏厂家中品瑞一起快速看懂SMD封装与COB封装…...

深入理解策略梯度算法

策略梯度&#xff08;Policy Gradient&#xff09;算法是强化学习中的一种重要方法&#xff0c;通过优化策略以获得最大回报。本文将详细介绍策略梯度算法的基本原理&#xff0c;推导其数学公式&#xff0c;并提供具体的例子来指导其实现。 策略梯度算法的基本概念 在强化学习…...

Unicode 和 UTF-8 以及它们之间的关系

通俗易懂的 Unicode 和 UTF-8 解释 Unicode 是什么&#xff1f; 想象一下&#xff0c;我们有一个巨大的图书馆&#xff0c;这个图书馆里有各种各样的书&#xff0c;每本书都有一个唯一的编号。Unicode 就像是这个图书馆的目录系统&#xff0c;它给世界上所有的字符&#xff0…...

【C++】多态详解

&#x1f497;个人主页&#x1f497; ⭐个人专栏——C学习⭐ &#x1f4ab;点击关注&#x1f929;一起学习C语言&#x1f4af;&#x1f4ab; 目录 一、多态概念 二、多态的定义及实现 1. 多态的构成条件 2. 虚函数 2.1 什么是虚函数 2.2 虚函数的重写 2.3 虚函数重写的两个…...

C#异常捕获

前言 在C#中&#xff0c;我们无法保证我们编写的程序没有一点bug&#xff0c;如果我们对于这些抛出异常的bug不进行任何的处理的话&#xff0c;那么我们的软件在抛出这些异常的时候就会崩溃&#xff0c;也就是软件闪退&#xff0c;并且这种闪退由于我们没有进行处理&#xff0…...

工业一体机根据软件应用需求灵活选配

在当今工业领域&#xff0c;数字化、智能化的发展趋势愈发明显&#xff0c;工业一体机作为关键的设备&#xff0c;其重要性日益凸显。而能够根据软件应用需求进行灵活选配的工业一体机&#xff0c;更是为企业提供了高效、定制化的解决方案。 一、工业一体机的全封闭无风扇散热功…...

centos7 mqtt服务mosquitto搭建记录

1、系统centos7.6&#xff0c;安装默认版本 yum install mosquitto 2、启动运行 systemctl start mosquitto 3、设置自启动 systemctl enable mosquitto 4、修改配置文件 vim /etc/mosquitto/mosquitto.conf 监听端口&#xff0c;默认为1883&#xff0c;需要修改删除前面…...

双阶段目标检测算法:精确与效率的博弈

双阶段目标检测算法&#xff1a;精确与效率的博弈 目标检测是计算机视觉领域的一个核心任务&#xff0c;它涉及在图像或视频中识别和定位多个对象。双阶段目标检测算法是一种特殊的目标检测方法&#xff0c;它通过两个阶段来提高检测的准确性。本文将详细介绍双阶段目标检测算…...

Python量化交易策略

策略详情 按照1分k线图&#xff1b;跳过9&#xff1a;30点1分k线图不计算 买入&#xff1b;监控市面的可转债&#xff1b;当某1分涨幅大于x涨幅&#xff0c;一直重复x次&#xff0c;选择买入&#xff0c;符合x设置的条件只选择成交额最大的可转债买入&#xff08;x要自定义&…...

为什么我感觉 C 语言在 Linux 下执行效率比 Windows 快得多?

在开始前刚好我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「Linux的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01;Windows的终端或者叫控制台…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...

node.js的初步学习

那什么是node.js呢&#xff1f; 和JavaScript又是什么关系呢&#xff1f; node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说&#xff0c; 需要在node.js的环境上进行当JavaScript作为前端开发语言来说&#xff0c;需要在浏览器的环境上进行 Node.js 可…...

游戏开发中常见的战斗数值英文缩写对照表

游戏开发中常见的战斗数值英文缩写对照表 基础属性&#xff08;Basic Attributes&#xff09; 缩写英文全称中文释义常见使用场景HPHit Points / Health Points生命值角色生存状态MPMana Points / Magic Points魔法值技能释放资源SPStamina Points体力值动作消耗资源APAction…...