C++ 如何解决回调地狱问题
“地狱回调”(Callback Hell)是指在编程中使用过多嵌套回调函数,导致代码难以阅读和维护。C++ 提供了多种方法来解决这个问题,包括以下几种常见的方法:
- 使用 Lambda 表达式和标准库的
std::function - 使用
std::future和std::promise - 使用协程 (C++20)
- 使用异步框架
下面是更多关于每种方法的详细解释和示例。
1. 使用 Lambda 表达式和标准库 std::function
Lambda 表达式可用于简化回调函数,使代码更清晰。
#include <iostream>
#include <functional>void fetchData(const std::function<void(std::string)>& callback) {std::string data = "data from fetch";callback(data);
}void processData(const std::string& data, const std::function<void(std::string)>& callback) {std::string processedData = data + " processed";callback(processedData);
}int main() {fetchData([](std::string data) {std::cout << "Fetched: " << data << std::endl;processData(data, [](std::string processedData) {std::cout << "Processed: " << processedData << std::endl;});});return 0;
}
2. 使用 std::future 和 std::promise
通过使用 std::future 和 std::promise 实现更可读的异步代码。
#include <iostream>
#include <future>
#include <thread>std::string fetchData() {return "data from fetch";
}std::string processData(const std::string& data) {return data + " processed";
}int main() {std::promise<std::string> fetchPromise;std::future<std::string> fetchFuture = fetchPromise.get_future();std::thread fetchThread([&fetchPromise]() {fetchPromise.set_value(fetchData());});std::thread processThread([](std::future<std::string> fetchFuture) {auto fetchedData = fetchFuture.get();std::string processedData = processData(fetchedData);std::cout << "Processed: " << processedData << std::endl;}, std::move(fetchFuture));fetchThread.join();processThread.join();return 0;
}
3. 使用协程 (C++20)
C++20 引入了协程,使得异步操作更加流畅和自然。
#include <iostream>
#include <coroutine>
#include <future>struct Task {struct promise_type {std::promise<void> promise;Task get_return_object() {return Task{ promise.get_future() };}std::suspend_never initial_suspend() { return {}; }std::suspend_never final_suspend() noexcept { return {}; }void return_void() { promise.set_value(); }void unhandled_exception() { promise.set_exception(std::current_exception()); }};std::future<void> future;
};Task fetchData(std::string& result) {result = "data from fetch";co_return;
}Task processData(std::string& result) {result += " processed";co_return;
}int main() {std::string data;auto t1 = fetchData(data);t1.future.get();auto t2 = processData(data);t2.future.get();std::cout << "Processed: " << data << std::endl;return 0;
}
4. 使用异步框架
异步框架如 Boost.Asio 或 libuv 可以帮助管理异步操作,避免回调地狱。
#include <iostream>
#include <boost/asio.hpp>boost::asio::io_context io;void fetchData(const std::function<void(std::string)>& callback) {std::string data = "data from fetch";io.post([callback, data]() {callback(data);});
}void processData(const std::string& data, const std::function<void(std::string)>& callback) {std::string processedData = data + " processed";io.post([callback, processedData]() {callback(processedData);});
}int main() {fetchData([](std::string data) {std::cout << "Fetched: " << data << std::endl;processData(data, [](std::string processedData) {std::cout << "Processed: " << processedData << std::endl;});});io.run();return 0;
}
总结
以上方法都可以有效地避免地狱回调问题。选择哪种方法取决于项目的具体需求、使用的 C++ 标准版本以及项目中是否已经使用了某些库或框架。
相关文章:
C++ 如何解决回调地狱问题
“地狱回调”(Callback Hell)是指在编程中使用过多嵌套回调函数,导致代码难以阅读和维护。C 提供了多种方法来解决这个问题,包括以下几种常见的方法: 使用 Lambda 表达式和标准库的 std::function使用 std::future 和…...
普利姆最小生成树算法 c++
普里姆(Prim)算法是一种用于在加权连通无向图中查找最小生成树(MST, Minimum Spanning Tree)的贪心算法。最小生成树是一个子图,它包括图中的所有顶点,并且边的总权重最小。该算法的基本思想是从一个顶点开始,逐步扩展生成树,直到包括所有顶点。 算法步骤 初始化: 从…...
Golang 依赖注入设计哲学|12.6K 的依赖注入库 wire
一、前言 线上项目往往依赖非常多的具备特定能力的资源,如:DB、MQ、各种中间件,以及随着项目业务的复杂化,单一项目内,业务模块也逐渐增多,如何高效、整洁管理各种资源十分重要。 本文从“术”层面&#…...
ubuntu 23 连接正点imx6ull的uboot网络设置(nfs和tftp)
由于使用ubuntu23,无法连接正点的imx6ull的uboot,因为这个uboot里面的nfs是v2,ubuntu23内核是6.5不支持uboot v2。配置/etc/default/nfs-kernel-server sudo vim /etc/default/nfs-kernel-server 更改以下参数: RPCNFSDCOUNT"…...
CC6利用链分析
CC1的两条利用链,在JDK 8u71之后已修复,不可利用。 学一下不受版本限制的CC6利用链 分析版本 Commons Collections 3.2.1 JDK 8u65 环境配置参考JAVA安全初探(三):CC1链全分析 分析过程 我的Github主页Java反序列化学习同步更新,有简单…...
多线程编程的基本概念,C++标准库中的多线程支持(std::thread,std::async),如何处理线程同步和并发问题。
多线程编程在现代计算机系统中非常重要,因为它能够使程序同时执行多个操作,提高计算效率。以下是多线程编程的基本概念及如何在C标准库中使用std::thread和std::async进行多线程编程,同时处理线程同步和并发问题。 多线程编程的基本概念 线程…...
Linux的Socket开发概述
套接字(socket)是 Linux 下的一种进程间通信机制(socket IPC),在前面的内容中已经给大家提到过,使用 socket IPC 可以使得在不同主机上的应用程序之间进行通信(网络通信),…...
LLM调优,大模型怎么学
背景 LLM Transparency Tool 是一个用于深入分析和理解大型语言模型(LLM)工作原理的工具,旨在增加这些复杂系统的透明度。它提供了一个交互式界面,用户可以通过它观察、分析模型对特定输入(prompts)的反应…...
XLSX + LuckySheet + LuckyExcel实现前端的excel预览
文章目录 功能简介简单代码实现效果参考 功能简介 通过LuckyExcel的transformExcelToLucky方法, 我们可以把一个文件直接转成LuckySheet需要的json字符串, 之后我们就可以用LuckySheet预览excelLuckyExcel只能解析xlsx格式的excel文件,因此对…...
在Ubuntu上创建和启用交换文件的简单步骤
文章目录 为什么使用交换文件?步骤 1:创建交换文件步骤 2:设置正确的权限步骤 3:将文件格式化为交换空间步骤 4:启用交换文件步骤 5:验证交换文件步骤 6:永久启用交换文件步骤 7:调整…...
Java [ 基础 ] HashMap详解 ✨
目录 ✨探索Java基础 HashMap详解✨ 总述 主体 1. HashMap的基本概念 2. HashMap的工作原理 3. HashMap的常用操作 4. HashMap的优缺点 总结 常见面试题 常见面试题解答 1. HashMap的底层实现原理是什么? 2. 如何解决HashMap中的哈希冲突?…...
vue2项目迁移vue3与gogocode的使用
#背景 公司有个项目使用vue2jswebpack框架开发的,由于该项目内部需要安扫,导致很多框架出现了漏洞需要升级,其中主要需要从vue2升vue3,但是重新搭框架推翻重做成本太高,于是找到了gogocode。 #升级步骤踩坑 1. 安装 gogocode插…...
【Python123题库】#数列求和 #百分制成绩转换五分制(循环) #正负交错数列前n项和 #求数列前n项的平方和
禁止转载,原文:https://blog.csdn.net/qq_45801887/article/details/140079866 参考教程:B站视频讲解——https://space.bilibili.com/3546616042621301 有帮助麻烦点个赞 ~ ~ Python123题库 数列求和百分制成绩转换五分制(循环)正负交错数列…...
Edge浏览器选中后,出现AI智能生成 AI专业写作
这个是扩展里边的“ 网页万能复制 & ChatGPT AI写作助手”造成的,这个拓展增加了AI写作功能。关闭这个拓展就解决了。...
c++习题08-计算星期几
目录 一,问题 二,思路 三,代码 一,问题 二,思路 首先,需要注意到的是3^2000这个数值很大,已经远远超过了long long 数据类型能够表示的范围,如果想要使用指定的数据类型来保存…...
单目相机减速带检测以及测距
单目相机减速带检测以及测距项目是一个计算机视觉领域的应用,旨在使用一个摄像头(单目相机)来识别道路上的减速带,并进一步估计车辆与减速带之间的距离。这样的系统对于智能驾驶辅助系统(ADAS)特别有用&…...
Xilinx FPGA:vivado实现乒乓缓存
一、项目要求 1、用两个伪双端口的RAM实现缓存 2、先写buffer1,再写buffer2 ,在读buffer1的同时写buffer2,在读buffer2的同时写buffer1。 3、写端口50M时钟,写入16个8bit 的数据,读出时钟25M,读出8个16…...
解决 VM 虚拟机网络连接异常导致的 Finalshell 无法连接及 ifconfig 中 ens33 丢失问题
在使用 VM 虚拟机的过程中,遇到了一个颇为棘手的网络连接问题。平时虚拟机都能够正常启动并使用,但昨天在启用虚拟机时更换了一下网络节点,结果今天打开虚拟机后。Finalshell 无法连接上虚拟机,并且输入 ifconfig 命令后也没有 en…...
深入Django(三)
Django视图(Views)详解 引言 在前两天的博客中,我们介绍了Django的基本概念和模型系统。今天,我们将深入探讨Django的视图(Views),它们是处理用户请求和返回响应的地方。 什么是Django视图&a…...
观测云赋能「阿里云飞天企业版」,打造全方位监控观测解决方案
近日,观测云成功通过了「阿里云飞天企业版」的生态集成认证测试,并荣获阿里云颁发的产品生态集成认证证书。作为监控观测领域的领军者,观测云一直专注于提供统一的数据视角,助力用户构建起全球范围内的端到端全链路可观测服务。此…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果