当前位置: 首页 > news >正文

RK3568驱动指南|第十六篇 SPI-第192章 mcp2515驱动编写:完善write和read函数

瑞芯微RK3568芯片是一款定位中高端的通用型SOC,采用22nm制程工艺,搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码,支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU,可用于轻量级人工智能应用。RK3568 支持安卓 11 和 linux 系统,主要面向物联网网关、NVR 存储、工控平板、工业检测、工控盒、卡拉 OK、云终端、车载中控等行业。


【公众号】迅为电子

【粉丝群】258811263(加群获取驱动文档+例程)

【视频观看】嵌入式学习之Linux驱动(第十六篇 SPI_全新升级)_基于RK3568

【购买链接】迅为RK3568开发板瑞芯微Linux安卓鸿蒙ARM核心板人工智能AI主板


  1. 第192章 mcp2515驱动编写:完善write和read函数

在上个章节中对mcp2515的工作模式进行了修改,从配置模式修改为了环回模式,而在本章节将会继续对mcp2515的驱动程序进行完善,加入mcp2515的写函数和读函数,从而实现数据的发送和接收。

192.1 编写mcp2515写函数

MCP2515有三个发送缓冲器,每个发送缓冲器都具有14字节的内存空间,每个发送缓冲器的控制由TXBnCTRL寄存器管理,该寄存器决定了何时发送报文以及发送时的报文状态。该寄存器的具体内容如下所示:

需要通过该寄存器将缓冲器优先级设置为最高,缓冲器优先级由bit1-0两位所决定,当设置为11时,该发送缓冲器具有最高的发送优先级,可以通过以下代码进行设置:

#define TXB0CTRL 0x30   //发送缓冲器控制寄存器地址          mcp2515_change_regbit(TXB0CTRL, 0x03, 0x03);   //只对该寄存器低两位进行修改,修改值为0x03

发送缓冲器控制寄存器TXBnCTRL为发送缓冲器的第一个字节,接下来的5个字节用来装载标准和扩展标识符以及其他报文仲裁信息。最后的8个字节用于装载等待发送报文的8个可能的数据字节,这13个字节数据由用户空间所传递,且地址是连续的,间隔为一个字节,所以可以通过以下代码进行设置:

char w_kbuf[13] = {0};
int ret;// 从用户空间复制数据到内核缓冲区
ret = copy_from_user(w_kbuf, buf, size);
if (ret) {printk("copy_from_user w_kbuf is error\n");return -1;
}// 将数据写入MCP2515寄存器
for (i = 0; i < sizeof(w_kbuf); i++) {mcp2515_write_reg(0x31 + i, w_kbuf[i]);
}

数据设置完成之后,需要将TXBnCTRL寄存器的bit3设置为1,从而启动相应缓冲器的报文发送,TXBnCTRL寄存器就是上面修改发送缓冲器优先级的寄存器,具体设置代码如下所示:

 #define TXB0CTRL 0x30   //发送缓冲器控制寄存器地址
mcp2515_change_regbit(TXB0CTRL, 0x08, 0x08);   //只对该寄存器bit3进行修改,将bit3设置为1

在报文发送成功后,CANINTF.TXnIF寄存器将会被置1,该寄存器内容如下所示:

可以通过该寄存器来判断报文是否发送成功,由于使用的是缓冲器为0,所以这里要判断的位位bit2,判断完成之后,需要对该寄存器进行手动清零,具体判断代码如下所示:

#define CANINTF 0x2c // 等待发送完成
while (!(mcp2515_read_reg(CANINTF) & (1 << 2)));// 清除发送完成标志
mcp2515_change_regbit(CANINTF, 0x04, 0x00);

至此,关于mcp2515写函数的相关知识就总结完成了,可以将上面讲解的代码整理成一个完整的函数,具体内容如下所示:

#define TXB0CTRL 0x30   //发送缓冲器控制寄存器地址
#define CANINTF 0x2c // 写设备操作函数
ssize_t mcp2515_write(struct file *file, const char __user *buf, size_t size, loff_t *offset) {char w_kbuf[13] = {0};int ret;int i;// 设置TXB0CTRL寄存器的部分位mcp2515_change_regbit(TXB0CTRL, 0x03, 0x03);// 从用户空间复制数据到内核缓冲区ret = copy_from_user(w_kbuf, buf, size);if (ret) {printk("copy_from_user w_kbuf is error\n");return -1;}// 将数据写入MCP2515寄存器for (i = 0; i < sizeof(w_kbuf); i++) {mcp2515_write_reg(0x31 + i, w_kbuf[i]);}// 设置TXB0CTRL寄存器的部分位,启动发送mcp2515_change_regbit(TXB0CTRL, 0x08, 0x08);// 等待发送完成while (!(mcp2515_read_reg(CANINTF) & (1 << 2)));// 清除发送完成标志mcp2515_change_regbit(CANINTF, 0x04, 0x00);return size;
}

192.2编写mcp2515读函数

在上个小节中编写了mcp2515的写函数,在本小节将编写mcp2515的读函数。

MCP2515 具有两个全接收缓冲器,当数据报文传送至某一接收缓冲器时,与该接收缓冲器对应的CANINTF.RXnIF位将置1,可以通过CANINTF.RXnIF寄存器的值来判断是否接收完成,CANINTF寄存器内容在上一节已经列出,这里不再重复,具体判断代码如下所示:

#define CANINTF 0x2c // 等待接收缓冲区满标志位被设置
while (!(mcp2515_read_reg(CANINTF) & (1 << 0)));

然后编写读数据相关的代码,接收缓冲器与发送寄存器相匹配,前5个字节用来装载标准和扩展标识符以及其他报文仲裁信息,最后的8个字节用于装载等待发送报文的8个可能的数据字节,且地址是连续的,间隔为一个字节,接收缓冲器0的标准标识符高位寄存器地址为0x61,所以可以通过以下代码进行设置:

    char r_kbuf[13] = {0};  // 内核缓冲区,用于存储从设备读取的数据int i;// 从接收缓冲区读取数据到内核缓冲区for (i = 0; i < sizeof(r_kbuf); i++) {r_kbuf[i] = mcp2515_read_reg(0x61 + i);}

数据传送完成之后需要对CANINTF.RXnIF寄存器清零,并且使用copy_to_user传输到用户空间,具体代码如下所示:

 // 清除接收缓冲区满标志位mcp2515_change_regbit(CANINTF, 0x01, 0x00);// 将内核缓冲区的数据复制到用户缓冲区ret = copy_to_user(buf, r_kbuf, size);if (ret) {printk("copy_to_user r_kbuf is error\n");return -1;  // 返回-1表示复制数据失败}

至此,关于mcp2515读函数的相关知识就总结完成了,可以将上面讲解的代码整理成一个完整的函数,具体内容如下所示:

#define CANINTF 0x2c // 读设备操作函数,从设备读取数据到用户缓冲区
ssize_t mcp2515_read(struct file *file, char __user *buf, size_t size, loff_t *offset) {char r_kbuf[13] = {0};  // 内核缓冲区,用于存储从设备读取的数据int i;int ret;// 等待接收缓冲区满标志位被设置while (!(mcp2515_read_reg(CANINTF) & (1 << 0)));// 从接收缓冲区读取数据到内核缓冲区for (i = 0; i < sizeof(r_kbuf); i++) {r_kbuf[i] = mcp2515_read_reg(0x61 + i);}// 清除接收缓冲区满标志位mcp2515_change_regbit(CANINTF, 0x01, 0x00);// 将内核缓冲区的数据复制到用户缓冲区ret = copy_to_user(buf, r_kbuf, size);if (ret) {printk("copy_to_user r_kbuf is error\n");return -1;  // 返回-1表示复制数据失败}return 0;  // 返回0表示成功读取数据
}

192.3 实验程序编写

192.3.1 编写驱动程序

本实验驱动对应的网盘路径为:iTOP-3568开发板\03_【iTOP-RK3568开发板】指南教程\02_Linux驱动配套资料\04_Linux驱动程序\118_mcp2515_06\

本实验将以191章编写完成的驱动程序为基础,添加了本章节完善的mcp2515的读和写函数,编写完成的mcp2515.c代码如下所示:

#include <linux/init.h>
#include <linux/module.h>
#include <linux/spi/spi.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/kdev_t.h>
#include <linux/uaccess.h>#define CNF1 0x2a                    // 寄存器定义
#define CNF2 0x29
#define CNF3 0x28
#define RXB0CTRL 0x60
#define CANINTE 0x2b
#define CANCTRL 0xf                    // CAN控制寄存器#define TXB0CTRL 0x30   //发送缓冲器控制寄存器地址
#define CANINTF 0x2c dev_t dev_num; // 设备号
struct cdev mcp2515_cdev; // 字符设备结构体
struct class *mcp2515_class; // 设备类
struct device *mcp2515_device; // 设备
struct spi_device *spi_dev; // SPI设备指针// MCP2515芯片复位函数
void mcp2515_reset(void){int ret;char write_buf[] = {0xc0}; // 复位指令0x11000000即0xc0ret = spi_write(spi_dev, write_buf, sizeof(write_buf)); // 发送复位命令if(ret < 0){printk("spi_write is error\n"); // 打印错误信息}
}// MCP2515读寄存器函数
char mcp2515_read_reg(char reg) {char write_buf[] = {0x03, reg};  // SPI写缓冲区写入SPI读指令0x03char read_buf;                   // SPI读缓冲区int ret;ret = spi_write_then_read(spi_dev, write_buf, sizeof(write_buf), &read_buf, sizeof(read_buf));  // 调用SPI写读函数if (ret < 0) {printk("spi_write_then_read error\n");return ret;}return read_buf;
}//  MCP2515写寄存器函数
void mcp2515_write_reg(char reg, char value) {int ret;char write_buf[] = {0x02, reg, value};  // SPI写缓冲区,用于发送写寄存器命令ret = spi_write(spi_dev, write_buf, sizeof(write_buf));  // 发送SPI写命令if (ret < 0) {printk("mcp2515_write_reg error\n");}
}// MCP2515修改寄存器位函数
void mcp2515_change_regbit(char reg, char mask, char value) {int ret;char write_buf[] = { 0x05, reg, mask, value };  // SPI写缓冲区,用于发送修改寄存器位命令ret = spi_write(spi_dev, write_buf, sizeof(write_buf));  // 发送SPI写命令if (ret < 0) {printk("mcp2515_change_regbit error\n");}
}// 打开设备文件的回调函数
int mcp2515_open(struct inode *inode, struct file *file) {return 0; // 返回成功
}// 读设备操作函数,从设备读取数据到用户缓冲区
ssize_t mcp2515_read(struct file *file, char __user *buf, size_t size, loff_t *offset) {char r_kbuf[13] = {0};  // 内核缓冲区,用于存储从设备读取的数据int i;int ret;// 等待接收缓冲区满标志位被设置while (!(mcp2515_read_reg(CANINTF) & (1 << 0)));// 从接收缓冲区读取数据到内核缓冲区for (i = 0; i < sizeof(r_kbuf); i++) {r_kbuf[i] = mcp2515_read_reg(0x61 + i);}// 清除接收缓冲区满标志位mcp2515_change_regbit(CANINTF, 0x01, 0x00);// 将内核缓冲区的数据复制到用户缓冲区ret = copy_to_user(buf, r_kbuf, size);if (ret) {printk("copy_to_user r_kbuf is error\n");return -1;  // 返回-1表示复制数据失败}return 0;  // 返回0表示成功读取数据
}// 写设备操作函数
ssize_t mcp2515_write(struct file *file, const char __user *buf, size_t size, loff_t *offset) {char w_kbuf[13] = {0};int ret;int i;// 设置TXB0CTRL寄存器的部分位mcp2515_change_regbit(TXB0CTRL, 0x03, 0x03);// 从用户空间复制数据到内核缓冲区ret = copy_from_user(w_kbuf, buf, size);if (ret) {printk("copy_from_user w_kbuf is error\n");return -1;}// 将数据写入MCP2515寄存器for (i = 0; i < sizeof(w_kbuf); i++) {mcp2515_write_reg(0x31 + i, w_kbuf[i]);}// 设置TXB0CTRL寄存器的部分位,启动发送mcp2515_change_regbit(TXB0CTRL, 0x08, 0x08);// 等待发送完成while (!(mcp2515_read_reg(CANINTF) & (1 << 2)));// 清除发送完成标志mcp2515_change_regbit(CANINTF, 0x04, 0x00);return size;
}// 关闭设备文件的回调函数
int mcp2515_release(struct inode *inode, struct file *file) {return 0; // 返回成功
}// 设备文件操作集合
struct file_operations mcp2515_fops = {.open = mcp2515_open,.read = mcp2515_read,.write = mcp2515_write,.release = mcp2515_release,
};// MCP2515设备初始化函数
int mcp2515_probe(struct spi_device *spi) {int ret, value;printk("This is mcp2515_probe\n");spi_dev = spi; // 保存SPI设备指针// 分配字符设备号ret = alloc_chrdev_region(&dev_num, 0, 1, "mcp2515");if (ret < 0) {printk("alloc_chrdev_region error\n");}// 初始化字符设备cdev_init(&mcp2515_cdev, &mcp2515_fops);mcp2515_cdev.owner = THIS_MODULE;// 添加字符设备ret = cdev_add(&mcp2515_cdev, dev_num, 1);if (ret < 0) {printk("cdev_add error\n");return -1;}// 创建设备类mcp2515_class = class_create(THIS_MODULE, "spi_to_can");if (IS_ERR(mcp2515_class)) {printk("mcp2515_class error\n");return PTR_ERR(mcp2515_class);}// 创建设备mcp2515_device = device_create(mcp2515_class, NULL, dev_num, NULL, "mcp2515");if (IS_ERR(mcp2515_device)) {printk("mcp2515_device error\n");return PTR_ERR(mcp2515_device);}mcp2515_reset();             // 复位MCP2515设备value = mcp2515_read_reg(0x0e);  // 读取寄存器值printk("value is %x\n", value);  // 打印读取的值mcp2515_write_reg(CNF1, 0x01);  // 写入寄存器配置值mcp2515_write_reg(CNF2, 0xb1);mcp2515_write_reg(CNF3, 0x05);mcp2515_write_reg(RXB0CTRL, 0x60);mcp2515_write_reg(CANINTE, 0x05);mcp2515_change_regbit(CANCTRL, 0xe0, 0x40);value = mcp2515_read_reg(0x0e);  // 读取寄存器值printk("value is %x\n", value);  // 打印读取的值return 0; // 返回成功
}// MCP2515 SPI设备的移除函数
static int mcp2515_remove(struct spi_device *spi) {device_destroy(mcp2515_class, dev_num);class_destroy(mcp2515_class);cdev_del(&mcp2515_cdev);unregister_chrdev_region(dev_num, 1);return 0;
}// MCP2515设备匹配表,用于设备树匹配
static const struct of_device_id mcp2515_of_match_table[] = {{ .compatible = "my-mcp2515" },{}
};// MCP2515设备ID匹配表,用于总线匹配
static const struct spi_device_id mcp2515_id_table[] = {{ "mcp2515", 0 },{}
};// MCP2515 SPI驱动结构体
static struct spi_driver spi_mcp2515 = {.probe = mcp2515_probe, // 探测函数.remove = mcp2515_remove, // 移除函数.driver = {.name = "mcp2515", // 驱动名称.owner = THIS_MODULE, // 所属模块.of_match_table = mcp2515_of_match_table, // 设备树匹配表
},.id_table = mcp2515_id_table, // 设备ID匹配表
};// 驱动初始化函数
static int __init mcp2515_init(void)
{int ret;// 注册SPI驱动ret = spi_register_driver(&spi_mcp2515);if (ret < 0) {// 注册失败,打印错误信息printk("spi_register_driver error\n");return ret;}return ret;
}// 驱动退出函数
static void __exit mcp2515_exit(void)
{// 注销SPI驱动spi_unregister_driver(&spi_mcp2515);
}module_init(mcp2515_init);
module_exit(mcp2515_exit);MODULE_LICENSE("GPL");

192.3.2 编写测试APP

本实验测试APP对应的网盘路径为:iTOP-3568开发板\03_【iTOP-RK3568开发板】指南教程\02_Linux驱动配套资料\04_Linux驱动程序\118_mcp2515_06\

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>// 主函数,程序入口点
int main(int argc, char *argv[]){int fd;  // 文件描述符int i;   // 循环变量// 写缓冲区,包含13个字节的数据,将发送到MCP2515char w_buf[13]= {0x66,0x08,0x22,0x33,0x08,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};// 读缓冲区,用于接收从MCP2515读取的数据char r_buf[13] = {0};// 打开MCP2515设备文件,获取文件描述符fd = open("/dev/mcp2515", O_RDWR);if(fd < 0){// 打开设备文件失败,打印错误信息并返回printf("open /dev/mcp2515 error \n");return -1;}// 将写缓冲区的数据写入设备write(fd, w_buf, sizeof(w_buf));// 从设备读取数据到读缓冲区read(fd, r_buf, sizeof(r_buf));// 打印读缓冲区的数据for(i = 0; i < 13; i++){printf("r_buf[%d] is %d\n", i, r_buf[i]);}// 关闭设备文件close(fd);return 0;  // 返回0表示程序正常结束
}

上述测试app代码中第13行表示要发送给mcp2515的13个字节的数据,其中前5个字节用来装载标准和扩展标识符以及其他报文仲裁信息,最后的8个字节用于装载等待发送报文的8个可能的数据字节,第一个字节发送缓冲器标准标识符高位、第三个字节发送缓冲器扩展标识符高位、第四个字节发送缓冲器扩展标识符低位可以随意设置,这里设置的是0x66、0x22、0x33。

第二个字节为发送缓冲器标准标识符低位,该寄存器的具体内容如下所示:

其中bit3代表扩展标识符的使能位,这里需要设置为1进行使能,换算成16进制为0x08。

第5个字节为发送缓冲器数据长度码,该寄存器内容如下所示:

其中bit6需要设置为0,表示发送的报文为数据帧。而要发送的数据为8个字节,所以bit3-bit0需要设置为8,换算成16进制为0x08。

至此,关于前5个字节内容的设置就讲解完成了,而后8个字节为要发送的数据,这里随意取值即可。

192.4 运行测试

192.4.1 编译驱动程序

在上一小节中的mcp2515.c代码同一目录下创建 Makefile 文件,Makefile 文件内容如下所示:

export ARCH=arm64#设置平台架构
export CROSS_COMPILE=aarch64-linux-gnu-#交叉编译器前缀
obj-m += mcp2505.o    #此处要和你的驱动源文件同名
KDIR :=/home/topeet/Linux/linux_sdk/kernel    #这里是你的内核目录                                                                                                                            
PWD ?= $(shell pwd)
all:make -C $(KDIR) M=$(PWD) modules    #make操作
clean:make -C $(KDIR) M=$(PWD) clean    #make clean操作

对于Makefile的内容注释已在上图添加,保存退出之后,来到存放mcp2515.c和Makefile文件目录下,如下图所示:

然后使用命令“make”进行驱动的编译,编译完成如下图所示:

编译完生成ft5x06_driver.ko目标文件,如下图所示:

至此驱动模块就编译成功了。

192.4.2 编译应用程序

首先进行应用程序的编译,因为测试APP是要在开发板上运行的,所以需要aarch64-linux-gnu-gcc来编译,输入以下命令,编译完成以后会生成一个app的可执行程序,如下图所示:

 aarch64-linux-gnu-gcc app.c -o app

然后将编译完成的可执行程序拷贝到开发板上.

192.4.2 运行测试

在进行实验之前,首先要确保开发板烧写的是我们在186.1小节中编译出来的boot.img。开发板启动之后,然后使用以下命令进行驱动模块的加载,如下图所示:

insmod mcp2515.ko

然后使用“./app”运行上一小节中编译的可执行程序,运行结果如下所示:

可以看到可执行程序运行之后会将传输的13位数据依次打印出来,这里打印的是10进制,换算成16进制之后与0x66,0x08,0x22,0x33,0x08,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08相匹配,证明编写的mcp2515读函数和写函数可以正常工作。

最后使用以下命令进行驱动模块的卸载,如下图所示:

rmmod mcp2515.ko

由于没有在remove卸载函数中添加打印相关内容,所以使用rmmod命令卸载驱动之后,没有任何打印。

至此,MCP2515读函数和写函数测试实验就完成了。

 

相关文章:

RK3568驱动指南|第十六篇 SPI-第192章 mcp2515驱动编写:完善write和read函数

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…...

#BI建模与数仓建模有什么区别?指标体系由谁来搭建?

问题1&#xff1a; 指标体系是我们数仓来搭建还是分析师来做&#xff0c;如何去推动&#xff1f; 问题2&#xff1a;BI建模与数仓建模有什么区别&#xff1f; 指标体系要想做好&#xff0c;其实是分两块内容的&#xff0c;一块是顶层设计阶段&#xff0c;业务指标体系的搭建&am…...

如何用Python实现三维可视化?

Python拥有很多优秀的三维图像可视化工具&#xff0c;主要基于图形处理库WebGL、OpenGL或者VTK。 这些工具主要用于大规模空间标量数据、向量场数据、张量场数据等等的可视化&#xff0c;实际运用场景主要在海洋大气建模、飞机模型设计、桥梁设计、电磁场分析等等。 本文简单…...

chrome.storage.local.set 未生效

之前chrome.storage.local.set 和 get 一直不起作用 使用以下代码运行成功。 chrome.storage.local.set({ pageState: "main" }).then(() > {console.log("Value is set");});chrome.storage.local.get(["pageState"]).then((result) > …...

泛微开发修炼之旅--30 linux-Ecology服务器运维脚本

文章链接&#xff1a;30 linux-ecology服务器运维脚本...

LeetCode 全排列

思路&#xff1a;这是一道暴力搜索问题&#xff0c;我们需要列出答案的所有可能组合。 题目给我们一个数组&#xff0c;我们很容易想到的做法是将数组中的元素进行排列&#xff0c;如何区分已选中和未选中的元素&#xff0c;容易想到的是建立一个标记数组&#xff0c;已经选中的…...

python实现支付宝异步回调验签

说明 python实现支付宝异步回调验签&#xff0c;示例中使用Django框架。 此方案使用了支付宝的pythonSDK&#xff0c;请一定装最新版本的&#xff0c;支付宝官网文档不知道多久没更新了&#xff0c;之前的版本pip安装会报一些c库不存在的错误&#xff1b; pip install alipay-…...

注意!Vue.js 或 Nuxt.js 中请停止使用.value

大家好,我是CodeQi! 一位热衷于技术分享的码仔。 当您在代码中使用.value时,必须每次都检查变量是否存在并且是引用。 这可能很麻烦,因为在运行时使用.value可能会导致错误。然而,有一个简单的解决方法,即使用unref()而不是.value。 unref()会检查变量是否是引用,并自…...

Java:JDK、JRE和JVM 三者关系

文章目录 一、JDK是什么二、JRE是什么三、JDK、JRE和JVM的关系 一、JDK是什么 JDK&#xff08;Java Development Kit&#xff09;&#xff1a;Java开发工具包 JRE&#xff1a;Java运行时环境开发工具&#xff1a;javac&#xff08;编译工具&#xff09;、java&#xff08;运行…...

Radio专业术语笔记

在收音机的 RDS (Radio Data System) 功能中&#xff0c;CT 代表 “Clock Time”。RDS 是一种数字广播标准&#xff0c;用于在调频广播中传输辅助数据&#xff0c;如电台名称、节目类型、交通信息等。CT 功能是其中的一部分&#xff0c;用于同步和显示广播电台发送的当前时间。…...

cocosCreator找出未用到的图片

最近整理项目的时候发现有些资源文件夹有点轮乱(一些历史原因导致的),而且有很多图片都是没用了的,但是没有被删除掉,还一直放在项目中,导致项目的资源文件夹比较大,而且还冗余。于是今天想着整理一下。 公开免费链接 找出未使用的图片 有好几种方法可以找出未使用的图片…...

一览 Anoma 上的有趣应用概念

撰文&#xff1a;Tia&#xff0c;Techub News 本文来源香港Web3媒体&#xff1a;Techub News Anoma 的目标是为应用提供通用的意图机器接口&#xff0c;这意味着使用 Anoma&#xff0c;开发人员可以根据意图和分布式意图机编写应用&#xff0c;而不是根据事务和特定状态机进行…...

Spring Boot集成fastjson2快速入门Demo

1.什么是fastjson2&#xff1f; fastjson2是阿里巴巴开发的一个高性能的Java JSON处理库&#xff0c;它支持将Java对象转换成JSON格式&#xff0c;同时也支持将JSON字符串解析成Java对象。本文将介绍fastjson2的常见用法&#xff0c;包括JSON对象、JSON数组的创建、取值、遍历…...

Three.js机器人与星系动态场景(二):强化三维空间认识

在上篇博客中介绍了如何快速利用react搭建three.js平台&#xff0c;并实现3D模型的可视化。本文将在上一篇的基础上强化坐标系的概念。引入AxesHelper辅助工具及文本绘制工具&#xff0c;带你快速理解camer、坐标系、position、可视区域。 Three.js机器人与星系动态场景&#x…...

java顺序查找

其中有一个常用的编程思想&#xff1a; 由于是遍历查找&#xff0c;不能用if-else来输出没有找到&#xff0c;而应该设置一个索引index&#xff0c;如果找到就将index的值设置成下标的值&#xff0c;如果遍历结束后index仍为初始值&#xff0c;才是没有找到 //2024.07.03impor…...

提升学生职务执行力的智慧校园学工管理策略

智慧校园的学工管理系统匠心独运地融入了“学生职务”这一创新模块&#xff0c;它紧密贴合学生的实际需求&#xff0c;致力于在校期间的实践经验积累和个人能力的全面提升。这个模块化身为一个便捷的综合平台&#xff0c;让学生们能够轻松发掘并参与到丰富多彩的校内职务中去&a…...

系统运维面试总结(shell编程)

SYNDDOS攻击&#xff0c;需要判断这个访问是正常访问还是信包攻击&#xff0c;当前这个信包发起的访问数量是多少&#xff0c;例如看到30个信包同时再访问时设置监控报警。 一般选用/dev/urandom生成&#xff0c;但其生成的随机数带有二进制乱码&#xff0c;所以需要tr命令…...

在数据库中,什么是主码、候选码、主属性、非主属性?

在数据库中&#xff0c;主码、候选码、主属性和非主属性是几个重要的概念&#xff0c;它们对于理解数据库的结构和数据的完整性至关重要。以下是对这些概念的详细解释&#xff1a; 一、主码&#xff08;Primary Key&#xff09; 定义&#xff1a;主码&#xff0c;也被称为主键…...

Linux-笔记 udev机制介绍

目录 前言 概念 规则文件 规则文件的命名 规则文件的语法 匹配条件 赋值指令 例子 前言 由于之前利用udev机制实现了一个自动配置某功能的项目&#xff0c;所以这里做一下笔记总结&#xff0c;什么是udev&#xff1f;怎么用&#xff1f; 概念 udev其实是linux系统中一…...

深度学习基准模型Mamba

深度学习基准模型Mamba Mamba(英文直译&#xff1a;眼镜蛇)具有选择性状态空间的线性时间序列建模&#xff0c;是一种先进的状态空间模型 (SSM)&#xff0c;专为高效处理复杂的数据密集型序列而设计。 Mamba是一种深度学习基准模型&#xff0c;专为处理长序列数据而设计&…...

面试专区|【40道移动端测试高频题整理(附答案背诵版)】

iOS应用和Android应用测试有什么侧重点&#xff1f; iOS应用和Android应用测试的侧重点略有不同&#xff0c;主要表现在以下几个方面&#xff1a; 分辨率和屏幕尺寸&#xff1a;Android设备的分辨率和屏幕尺寸多种多样&#xff0c;因此&#xff0c;需要测试更多的分辨率和屏幕…...

vb6多线程异步,VB.NET 全用API实现:CreateThread创建多线程,等待线程完成任务

在VB.NET中&#xff0c;你可以使用API函数来创建多线程并等待线程完成任务。以下是一个示例代码&#xff0c;展示如何使用API函数来实现这个功能&#xff1a; Imports System.Runtime.InteropServices Imports System.ThreadingPublic Class Form1Private Delegate Sub ThreadC…...

Python中计算一个序列中特点值出现的数量,比如 [0,0,0,1,1,0,0,]中1的数量

要计算列表 [0, 0, 0, 1, 1, 0, 0] 中 1 的数量&#xff0c;可以使用 Python 中的 count 方法。这是一个简洁而有效的方法。下面是示例代码&#xff1a; # 定义列表 lst [0, 0, 0, 1, 1, 0, 0]# 计算列表中1的数量 num_ones lst.count(1)# 输出结果 print("Number of 1…...

gitignore

.gitignore 是一个在 Git 版本控制系统中使用的文件&#xff0c;它用于指定在 Git 仓库中哪些文件或目录应该被忽略&#xff0c;即不会被 Git 追踪或记录。这对于一些自动生成的、用户特定的或敏感的文件特别有用&#xff0c;比如编译后的目标文件、日志文件、配置文件中的密码…...

Adobe Premiere 视频编辑软件下载安装,pr全系列分享 轻松编辑视频

Adobe Premiere&#xff0c;自其诞生之日起&#xff0c;便以其卓越的性能和出色的表现&#xff0c;稳坐视频编辑领域的王者宝座&#xff0c;赢得了无数专业编辑人员与广大爱好者的青睐。这款强大的视频编辑软件&#xff0c;凭借其丰富的功能和灵活的操作性&#xff0c;为用户提…...

大屏开发系列——Echarts的基础使用

本文为个人近期学习总结&#xff0c;若有错误之处&#xff0c;欢迎指出&#xff01; Echarts在vue2中的基础使用 一、简单介绍二、基本使用&#xff08;vue2中&#xff09;1.npm安装2.main.js引入3.使用步骤(1)准备带有宽高的DOM容器&#xff1b;(2)初始化echarts实例&#xff…...

指挥中心操作台的形状及空间布局

在现代化的指挥中心&#xff0c;操作台的形状设计至关重要&#xff0c;它不仅影响着操作人员的工作效率和舒适度&#xff0c;还关系到整个指挥系统的运行效果。常见的指挥中心操作台形状多种多样&#xff0c;以满足不同的功能需求和空间布局。 直线型操作台 直线型操作台是最为…...

Linux源码阅读笔记07-进程管理4大常用API函数

find_get_pid find_get_pid(...)函数功能&#xff1a;根据进程编号获取对应的进程描述符&#xff0c;具体Linux内核源码对应函数设计如下&#xff1a; 获取进程描述符&#xff0c;且描述符的count1&#xff0c;表示进程多一个用户 pid_task pid_task(...)函数功能&#xff1…...

后端之路第三站(Mybatis)——JDBC跟Mybatis、lombok

一、什么是JDBC JDBC就是sun公司研发的一套通过java来操控数据库的工具&#xff0c;对应不同的数据库系统有不同的JDBC&#xff0c;而他们统称【驱动】&#xff0c;这就是上一篇我们提到创建Mybatis项目时要引入的依赖、以及连接数据库四要素里的第一要素。 JDBC有自己一套原始…...

零基础入门怎么学习老挝语字母表?《老挝语翻译通》App真人发音教学,学习老挝语字母发音和词汇句子!

这段老挝文字翻译成中文是什么意思&#xff1f;有什么好用的老挝语翻译工具推荐吗&#xff1f; 快速翻译&#xff1a;中老语言无缝转换&#xff0c;实时翻译&#xff0c;让沟通更流畅。 学习工具&#xff1a;零基础入门到流利对话&#xff0c;老挝语真人发音&#xff0c;让你的…...

linux深度deepin基于rsync和apt-mirror同步软件源及构建本地内网源

目录 一、rsync方式二、apt-mirror方式1.安装apt-mirror2.配置apt-mirror(/etc/apt/mirror.list)3.新建存放目录开始下载 3.发布mirror站点 一、rsync方式 参考官方文档地址&#xff1a; https://www.deepin.org/index/docs/wiki/05_HOW-TO/08_%E9%95%9C%E5%83%8F%E5%8A%A0%E9%…...

场景管理分析平台介绍

在数字化浪潮的推动下&#xff0c;数据已成为企业决策的重要依据。特别是在智能驾驶、虚拟现实和物联网等领域&#xff0c;场景数据的高效管理和利用至关重要。在智能驾驶领域面对海量的场景数据&#xff0c;如何高效处理、精准分析&#xff0c;并将其转化为有价值的决策支持&a…...

SQL Server和Oracle数据库的实时同步

数据同步在大数据应用中扮演着关键角色&#xff0c;它确保了数据的实时性和一致性&#xff0c;为数据分析和决策提供了重要支持。常见的数据同步方式包括ETL实时同步和实时ETL工具&#xff0c;后者可以基于日志追踪或触发器进行分类。不同的数据库系统针对实时同步也有各自的实…...

Python中使用Oracle向量数据库实现文本检索系统

Python中使用Oracle向量数据库实现文本检索系统 代码分析 在本文中,我们将深入分析一个使用Oracle向量数据库实现文本检索系统的Python代码,并基于相同的技术生成一个新的示例。这个系统允许我们存储文档及其嵌入向量,并执行相似性搜索。 代码分析 让我们逐步分析原始代码的主…...

java考试题20道

选择题 编译Java源代码文件的命令是javac javac命令是将Java源代码文件进行编译得到字节码文件(.class文件) java命令是在JVM上运行得到的字节码文件 下面是一个示例&#xff1a; javac test.java -------> test.class java test ------> 运行test.class文件下列那…...

云仓的优势体现在哪里?

云仓&#xff0c;即云仓储&#xff0c;是一种基于互联网和大数据技术的新型仓储管理模式。它通过高度的信息化、自动化和集成化管理模式&#xff0c;为企业提供高效、灵活、智能的仓储解决方案。云仓的优势主要体现在以下几个方面&#xff1a; ———————————————…...

github 设置中文,亲测有效

点进去 安装 选上面第二个&#xff0c;不行再选第一个 GitHub - maboloshi/github-chinese: GitHub 汉化插件&#xff0c;GitHub 中文化界面。 (GitHub Translation To Chinese)...

Spring容器生命周期中如前置运行程序和后置运行程序

在Spring容器加入一个实现了BeanPostProcessor接口bean实例&#xff0c;重写postProcessBeforeInitialization、postProcessAfterInitialization方法&#xff0c;在方法里面写具体的实现&#xff0c;从而达到Spring容器在初如化前或销毁时执行预定的程序&#xff0c;方法如下&a…...

C++ 现代教程二

线程支持库 - C中文 - API参考文档 GitHub - microsoft/GSL: Guidelines Support Library Fluent C&#xff1a;奇异递归模板模式&#xff08;CRTP&#xff09; - 简书 #include <thread> #include <iostream> #include <unordered_map> #include <futu…...

JavaScript函数闭包解析

一、什么是闭包 JavaScript中的函数闭包是指函数可以访问其父级作用域中的变量&#xff0c;即使函数在父级作用域外被调用。闭包可以获取和修改其父级作用域中的变量&#xff0c;即使父级作用域已经被销毁。 在JavaScript中&#xff0c;当一个函数被定义时&#xff0c;它会创…...

STM32MP135裸机编程:使用软件触发硬件复位

0 参考资料 STM32MP13xx参考手册.pdf 1 使用寄存器实现软件复位 1.1 复位电路概述 重点关注下面标红的路线&#xff1a; 通过这条路线可以清楚看到&#xff0c;我们可以通过设置RCC_MP_GRSTCSETR寄存器让RPCTL&#xff08;复位脉冲控制器&#xff09;给NRST&#xff08;硬件复…...

【饼图交通方式】用ECharts的graphic配置打造个性化

利用ECharts的graphic配置打造个性化图表 内容概要 ECharts是一款强大的数据可视化工具&#xff0c;它提供了丰富的配置选项来定制图表。本文将重点介绍graphic配置的使用&#xff0c;展示如何通过在饼图中添加个性化的图形元素&#xff0c;例如中心图像&#xff0c;来增强图…...

大模型学习笔记3【大模型】LLaMA学习笔记

文章目录 学习内容LLaMALLaMA模型结构LLaMA下载和使用好用的开源项目[Chinese-Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca)Chinese-Alpaca使用量化评估 学习内容 完整学习LLaMA LLaMA 2023年2月&#xff0c;由FaceBook公开了LLaMA&#xff0c;包含7B&#xff0…...

工程师 - 什么是SMP

什么是 SMP&#xff08;对称多处理&#xff09;&#xff1f; What is SMP (symmetric multiprocessing)? 对称多处理&#xff08;SMP&#xff0c;symmetric multiprocessing&#xff09;是由多个处理器完成的计算机处理过程&#xff0c;这些处理器共享一个操作系统&#xff0…...

Webpack: 并行构建

概述 受限于 Node.js 的单线程架构&#xff0c;原生 Webpack 对所有资源文件做的所有解析、转译、合并操作本质上都是在同一个线程内串行执行&#xff0c;CPU 利用率极低&#xff0c;因此&#xff0c;理所当然地&#xff0c;社区出现了一些以多进程方式运行 Webpack&#xff0…...

Vue的介绍与使用

1.Vue的介绍 内容讲解 【1】Vue介绍 1.vue属于一个前端框架&#xff0c;底层使用原生js编写的。主要用来进行前端和后台服务器之间的一个交互。 2.Vue是一套构建用户界面的渐进式前端框架。 “渐进式框架”简单的来说你可以将Vue作为你的应用一部分嵌入其中&#xff0c;代理…...

MYSQL双主双从,使用Keepalived双机热备+LVS高可用群集

MYSQL双主双从&#xff0c;使用Keepalived双机热备LVS高可用群集 ​ 文档只记录KeepalivedLVSmysql主从&#xff0c;不包含检验&#xff0c;如需检验&#xff0c;请自行添加web服务器 一、IP规划 服务器IP备注master1192.168.100.131master2的从master2192.168.100.132maste…...

9.计算机视觉—目标检测

目录 1.物体检测边缘框目标检测数据集总结边缘框代码实现2.锚框:目标检测的一种方法IoU—交并比赋予锚框标号使用非极大值抑制(NMS)输出总结代码实现1.物体检测 边缘框 一个边缘框可以通过四个数字定义 (左上x,左上y),(右下x,右下y)(左上x,左上y,宽,高)(中间x,中间y…...

构造函数深入理解

目录 构造函数构造函数体赋值初始化列表初始化列表格式初始化列表的意义以及注意点const修饰的成员变量初始化对象成员具体初始化的地方缺省值存在的意义例子1例子2 初始化与赋值引用成员变量的初始化注意点1注意点2我的疑惑 自定义类型成员初始化例子1例子2例子3例子4 初始化列…...

Rocky Linux 9 快速安装docker 教程

前述 CentOS 7系统将于2024年06月30日停止维护服务。CentOS官方不再提供CentOS 及后续版本&#xff0c;不再支持新的软件和补丁更新。CentOS用户现有业务随时面临宕机和安全风险&#xff0c;并无法确保及时恢复。由于 CentOS Stream 相对不稳定&#xff0c;刚好在寻找平替系统…...

Android 常用文件系统命令

Android 常用文件系统命令 当系统正在对某个文件系统的区域进行写入操作时&#xff08;读的话没关系&#xff09;&#xff0c;突然断电&#xff0c;会造成文件系统对应区域的损坏&#xff08;如写入脏数据&#xff09;&#xff0c; 而e2fsck算法就是用来恢复受损的文件系统&am…...

以创新思维驱动下的盲盒小程序:重塑用户体验

一、引言 在数字化浪潮的推动下&#xff0c;小程序以其便捷、高效、无需下载安装的特性&#xff0c;迅速成为移动互联网的新宠。其中&#xff0c;盲盒小程序以其独特的玩法和惊喜感&#xff0c;吸引了大量用户的关注和参与。然而&#xff0c;随着市场竞争的加剧&#xff0c;如…...

Ubuntu 22.04远程自动登录桌面环境

如果需要远程自动登录桌面环境&#xff0c;首先需要将Ubuntu的自动登录打开&#xff0c;在【settings】-【user】下面 然后要设置【Sharing】进行桌面共享&#xff0c;Ubuntu有自带的桌面共享功能&#xff0c;不需要另外去安装xrdp或者vnc之类的工具了 点开【Remote Desktop】…...

【web前端HTML+CSS+JS】--- HTML学习笔记01

学习链接&#xff1a;黑马程序员pink老师前端入门教程&#xff0c;零基础必看的h5(html5)css3移动端前端视频教程_哔哩哔哩_bilibili 学习文档&#xff1a; Web 开发技术 | MDN (mozilla.org) 一、前后端工作流程 WEB模型&#xff1a;前端用于采集和展示信息&#xff0c;中…...

SpringBoot | 大新闻项目后端(redis优化登录)

该项目的前篇内容的使用jwt令牌实现登录认证&#xff0c;使用Md5加密实现注册&#xff0c;在上一篇&#xff1a;http://t.csdnimg.cn/vn3rB 该篇主要内容&#xff1a;redis优化登录和ThreadLocal提供线程局部变量&#xff0c;以及该大新闻项目的主要代码。 redis优化登录 其实…...

SpringBoot原理

SpringBoot开发项目&#xff0c;为什么这么简单&#xff1f;SpringBoot帮我们做了哪些事情&#xff1f; 了解SpringBoot的底层原理是有必要的。 面试重点 spring框架中各种jar包的依赖关系&#xff08;还有各种jar包的版本适配&#xff09;、还有各种配置非常繁琐 SpringBoo…...

飞凡第三款车定名RC7:比理想L6好看,还比它便宜?

“今年年中,飞凡汽车全新的重磅车型将与广大用户见面,敬请期待。”这是今年年初,飞凡汽车在一封致合作伙伴的公开信中披露的内容。不料想时间刚刚来到5月中旬,飞凡就马不停蹄兑现了自己的诺言,将品牌第三款车型带到了工信部新车公示目录。根据公开信息显示,飞凡第三款车型…...

全新领克01vs同级竞品:颜值与性能谁更胜一筹?

在这个追求个性与品质的时代,豪华SUV市场竞争愈发激烈。然而,全新领克01以其独特的外观设计、科技感十足的内饰配置以及卓越的性能表现,成功脱颖而出,成为了市场上的一颗璀璨明珠。它颠覆了传统豪华SUV的刻板印象,以全新的姿态定义了未来豪华SUV的新标准。与此同时,作为同…...

HAL库使用FreeRTOS实时操作系统时配置时基源(TimeBase Source)

需要另外的定时器&#xff0c;用systic的时候生成项目会有警告 https://blog.51cto.com/u_16213579/10967728...

Flutter 中的 RichText 小部件:全面指南

Flutter 中的 RichText 小部件&#xff1a;全面指南 Flutter 是一个流行的跨平台 UI 工具包&#xff0c;它允许开发者使用 Dart 语言来构建高性能、高保真的移动应用。在 Flutter 中&#xff0c;RichText 是一个非常有用的小部件&#xff0c;它允许开发者在同一个文本行中混合…...

WAF几种代理模式详解

WAF简介 WAF的具体作用就是检测web应用中特定的应用&#xff0c;针对web应用的漏洞进行安全防护&#xff0c;阻止如SQL注入&#xff0c;XSS&#xff0c;跨脚本网站攻击等 正向代理 WAF和客户端与网络资源服务器都建立连接&#xff0c;但是WAF 的工作口具有自己的 IP 地址&…...

解锁Android高效数据传输的秘钥 - Parcelable剖析

作为Android开发者&#xff0c;我们经常需要在不同的组件(Activity、Service等)之间传输数据。这里的"传输"往往不仅仅是简单的数据复制&#xff0c;还可能涉及跨进程的内存复制操作。当传输的数据量较大时&#xff0c;这种操作可能会带来严重的性能问题。而Android系…...