当前位置: 首页 > news >正文

在 Mac 上使用 MLX 微调微软 phi3 模型

微调大语言模型是常见的需求,由于模型参数量大,即使用 Lora/Qlora 进行微调也需要 GPU 显卡,Mac M系是苹果自己的 GPU,目前主流的框架还在建立在 CUDA 的显卡架构,也就是主要的卡还是来自英伟达。如果要用 Mac 来做训练和推理,需要用MLX,MLX 类似于 Pytorch,对苹果芯片做了支持,从而使得苹果电脑也可以进行深度学习。本文将介绍如何用 MLX 训练 Phi3 大语言模型:

安装 MLX

pip install mlx-lm

模型下载推理

这里需要访问 HuggingFace 下载,可以使用国内镜像

国内镜像
https://hf-mirror.com/export HF_ENDPOINT=https://hf-mirror.compython -m mlx_lm.generate --model microsoft/Phi-3-mini-4k-instruct --max-token 2048 --prompt  "<|user|>\nCan you introduce yourself<|end|>\n<|assistant|>"

在这里插入图片描述

HF 模型转换为 MLX 模型

mlx 的命令都有一些默认值,-h 中没有具体说明, 只能去源码里看。

在这里插入图片描述
例如,转换完成的模型会保存到 mlx_model 目录下。

python -m mlx_lm.convert --hf-path microsoft/Phi-3-mini-4k-instruct

通过 MLX 进行调优

首先准备数据,MLX 使用 jsonl 数据格式进行训练,从 github 下载数据集并存放到 data 目录下,一共三个文件,test、train 和 valid,文件下载好之后我们就可以开始训练了。

https://github.com/microsoft/Phi-3CookBook/tree/main/code/04.Finetuning/mlx/data

消耗资源比较多,M2 风扇又开始转了。

python -m mlx_lm.lora --model microsoft/Phi-3-mini-4k-instruct --train --data ./data --iters 1000 

模型推理

  • 运行未训练的模型和训练好的模型,并对推理的结果进行比较。
python -m mlx_lm.generate --model microsoft/Phi-3-mini-4k-instruct --adapter-path ./adapters --max-token 2048 --prompt "Why do chameleons change colors? " --eos-token "<|end|>"    

在这里插入图片描述

  • 原始模型
python -m mlx_lm.generate --model microsoft/Phi-3-mini-4k-instruct --max-token 2048 --prompt "Why do chameleons change colors? " --eos-token "<|end|>"    

在这里插入图片描述

合并模型

将训练好的 Lora adapter 合并到原始模型中。

python -m mlx_lm.fuse --model microsoft/Phi-3-mini-4k-instruct

生成 GGUF

通过 llama.cpp 生成 GGUF,量化参数支持 ‘f32’, ‘f16’, ‘bf16’, ‘q8_0’,根据需要自行修改。Phi3 模型默认没有 tokenizer.model,需要从 HF 下载
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/tree/main

在这里插入图片描述
将 tokenizer.model 复制到 /lora_fused_model/ 目录下,完成后运行生成GGUF 的转换命令。

git clone https://github.com/ggerganov/llama.cpp.gitcd llama.cpppip install -r requirements.txtpython convert-hf-to-gguf.py ../lora_fused_model  --outfile ../phi-3-mini-ft.gguf --outtype q8_0

在这里插入图片描述

创建 Ollma 模型

首先创建 Ollama 的模型文件 ModelFile,和上一步生成的 gguf 文件放到同一个目录下

FROM ./phi-3-mini-ft.gguf
PARAMETER stop "<|end|>"

创建模型

ollama create phi3ft -f Modelfile

Ollama 启动模型并进行推理

ollama run phi3ft

在这里插入图片描述

总结

MLX 模型推理非常简单,数据准备好就可以训练和推理,本次使用的是 phi3 模型,中文支持的不好,以后可以试试 Qwen2 怎么样。

相关文章:

在 Mac 上使用 MLX 微调微软 phi3 模型

微调大语言模型是常见的需求&#xff0c;由于模型参数量大&#xff0c;即使用 Lora/Qlora 进行微调也需要 GPU 显卡&#xff0c;Mac M系是苹果自己的 GPU&#xff0c;目前主流的框架还在建立在 CUDA 的显卡架构&#xff0c;也就是主要的卡还是来自英伟达。如果要用 Mac 来做训练…...

【JavaEE】多线程代码案例(2)

&#x1f38f;&#x1f38f;&#x1f38f;个人主页&#x1f38f;&#x1f38f;&#x1f38f; &#x1f38f;&#x1f38f;&#x1f38f;JavaEE专栏&#x1f38f;&#x1f38f;&#x1f38f; &#x1f38f;&#x1f38f;&#x1f38f;上一篇文章&#xff1a;多线程代码案例(1)&a…...

Halcon支持向量机

一 支持向量机 1 支持向量机介绍&#xff1a; 支持向量机(Support Vector Machine&#xff0c;SVM)是Corinna Cortes和Vapnik于1995年首先提出的&#xff0c;它在解决小样本、非线性及高维模式识别表现出许多特有的优势。 2 支持向量机原理: 在n维空间中找到一个分类超平面…...

【Python机器学习】模型评估与改进——在模型选择中使用评估指标

我们通常希望&#xff0c;在使用GridSearchCV或cross_val_score进行模型选择时能够使用AUC等指标。scikit-learn提供了一种非常简单的实现方法&#xff0c;那就是scoring参数&#xff0c;它可以同时用于GridSearchCV和cross_val_score。你只需要提供一个字符串&#xff0c;用于…...

【C语言】union 关键字

在C语言中&#xff0c;union关键字用于定义联合体。联合体是一种特殊的数据结构&#xff0c;它允许不同的数据类型共享同一段内存。所有联合体成员共享同一个内存位置&#xff0c;因此联合体的大小取决于其最大成员的大小。 定义和使用联合体 基本定义 定义一个联合体类型时…...

电脑回收站删除的文件怎么恢复?5个恢复方法详解汇总!

电脑回收站删除的文件怎么恢复&#xff1f;在我们日常使用电脑的过程中&#xff0c;难免会遇到误删文件的情况。一旦发现自己误删文件了&#xff0c;先不要着急&#xff0c;还是有很多方法可以找回的。市面上还是有很多好用的文件恢复软件可以使用&#xff0c;具体介绍如下。 本…...

mac 安装cnpm 淘宝镜像记录

mac 安装cnpm 淘宝镜像记录 本文介绍了在安装cnpm时遇到权限问题的解决方案&#xff0c;包括使用sudo&#xff0c;处理SSL证书过期&#xff0c;以及因版本不一致导致的错误处理方法&#xff0c;步骤包括设置npm配置、卸载和重新安装cnpm到特定版本。 安装 npm install cnpm …...

ArcGIS Pro SDK (七)编辑 11 撤销重做

ArcGIS Pro SDK &#xff08;七&#xff09;编辑 11 撤销&重做 文章目录 ArcGIS Pro SDK &#xff08;七&#xff09;编辑 11 撤销&重做1 撤消/重做最近的操作 环境&#xff1a;Visual Studio 2022 .NET6 ArcGIS Pro SDK 3.0 1 撤消/重做最近的操作 //撤销 if (MapV…...

Excel 中的元素定位:相对定位、绝对定位和混合定位

在Excel中&#xff0c;单元格引用有三种主要类型&#xff1a;相对定位、绝对定位和混合定位。 这些类型主要用于公式和函数中&#xff0c;决定在复制或拖动公式时引用如何变化。 1. 相对定位 相对定位指的是不带“$”符号的单元格引用&#xff0c;例如 A1。 这种引用方式在…...

Idea2024安装后点击无响应

问题 最近因工作需要&#xff0c;升级一下 idea 版本&#xff0c;之前一直使用的是2020版本&#xff0c;下载最新的2024版本&#xff08;下载的 zip 包免安装模式&#xff0c;之前使用的2020版本也是免安装的&#xff0c;因为是免安装的&#xff0c;所以之前的版本也没有删除&…...

如何提高实验室分析结果的准确性呢

要提高实验室分析结果的准确性&#xff0c;可以从以下几个方面着手&#xff1a; 1、选择合适的实验方法 不同的实验方法具有不同的优缺点&#xff0c;实验方法的准确度直接影响测定结果的准确度。因此&#xff0c;在选择实验方法时&#xff0c;需要根据实验目的、实验原理、实…...

Perl 格式化输出:提升代码可读性的技巧

引言 Perl 是一种功能强大的脚本语言&#xff0c;广泛用于文本处理、系统管理、网络编程等多个领域。在 Perl 编程中&#xff0c;代码的格式化输出不仅有助于提升代码的可读性&#xff0c;还能增强程序的用户体验。本文将详细介绍如何在 Perl 中实现代码的格式化输出。 Perl …...

JavaScript基础-函数(完整版)

文章目录 函数基本使用函数提升函数参数arguments对象&#xff08;了解&#xff09;剩余参数(重点)展开运算符(...) 逻辑中断函数参数-默认参数函数返回值-return作用域(scope)全局作用域局部作用域变量的访问原则垃圾回收机制闭包 匿名函数函数表达式立即执行函数 箭头函数箭头…...

AI开发者的新选择:Mojo编程语言

随着人工智能技术的迅猛发展&#xff0c;编程语言的选择在AI项目的成功中扮演着至关重要的角色。近年来&#xff0c;Mojo编程语言作为一种专为AI开发者设计的新兴语言&#xff0c;逐渐引起了广泛关注。本文将详细介绍Mojo编程语言的特点、优势及其在AI开发中的应用。 目录 Mo…...

软考(高项)系统分析师--论软件开发模型及应用

文章目录 前言一、前期准备&#xff1a;二、论文部分: 前言 本文对系统分析师&#xff0c;软件开发模型及其应用文章进行展示&#xff0c;可以拷贝后直接粘贴到word 文档中。 一、前期准备&#xff1a; 项目主体功能项目背景常用的软件开发模型&#xff1a;瀑布模型&#xff…...

同一天提档又撤档!电影《野孩子》宣布取消7月10日公映安排——浔川电影报

同一天提档又撤档&#xff01; 7月3日晚上10点&#xff0c;电影野孩子 发声明官宣撤档&#xff0c;“由于后期进度原因&#xff0c;电影《野孩子》将取消7月10日的公映安排&#xff0c;我们向各影管院线的同仁及所有观众朋友们致以最诚挚的歉意&#xff0c;谢谢大家这段时间的…...

Shell编程之免交互

一、Here Document免交互 1&#xff1a;概述 Here Document 是一个特殊用途的代码块&#xff0c;它在 Linux Shell 中使用 I/O 重定向的方式将命令列表提供给交互式程序或命令&#xff0c;比如 ftp、cat 或 read 命令&#xff0c;Here Document 是标准输入的一种替代品 语法…...

基于opencv的斜光测距及python实现

1.前言 最近做了一个基于opencv的斜光测距的小项目&#xff0c;东西不多&#xff0c;但是很有意思&#xff0c;值得拿出来学一学。项目里面需要比较精确的定位功能&#xff0c;将前人matlab代码移植到python上&#xff0c;并且做了一些优化&#xff0c;简化逻辑(毕竟我是专业的…...

梯度下降算法

占楼&#xff0c;明天写...

第5章:软件工程

第5章&#xff1a;软件工程 软件工程概述 软件生命周期 软件过程 1.能力成熟度模型(CMM) CMM&#xff08;能力成熟度模型&#xff09;是一个评估和确定组织软件过程成熟度的模型。它最早于1987年由美国国防部软件工程研究所&#xff08;SEI&#xff09;提出&#xff0c;其目的…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...