基于opencv的斜光测距及python实现
1.前言
最近做了一个基于opencv的斜光测距的小项目,东西不多,但是很有意思,值得拿出来学一学。项目里面需要比较精确的定位功能,将前人matlab代码移植到python上,并且做了一些优化,简化逻辑(毕竟我是专业的程序员),也用了tkinter界面包装了一下,最后通过pyinstaller打包成程序给同事使用。
2.原理

通过使用不同的亮点位置和对应的高度进行多元线性回归建模,再对新的亮点位置进行高度预测。

如图分别是14,14.5,15,15.5对应的四张光点位置图。
3.获取亮点位置
def get_box(image):# 将图像转换为灰度图像gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 应用高斯模糊来减少噪声blurred = cv2.GaussianBlur(gray, (5, 5), 0)max_val = np.max(blurred)_, binary = cv2.threshold(blurred, max_val/2, 255, cv2.THRESH_BINARY)# 形态学开运算去除噪声kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))opened = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel)# 找到轮廓contours, _ = cv2.findContours(opened, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 如果找到轮廓,计算质心if contours:largest_contour = max(contours, key=cv2.contourArea)M = cv2.moments(largest_contour)if M["m00"] != 0:cx = int(M["m10"] / M["m00"])cy = int(M["m01"] / M["m00"])else:cx, cy = 0, 0centroid = (cx, cy)# 计算边界框x, y, w, h = cv2.boundingRect(largest_contour)p=10bbox = (x-p, y-p, w+2*p, h+2*p)# 在图像上绘制质心和边界框output_image = image.copy()cv2.circle(output_image, centroid, 5, (0, 255, 0), -1)x,y,w,h=bboxcv2.rectangle(output_image, (x, y), (x + w, y + h), (0, 255, 0), 2)print(f"亮点的中心位置: {centroid},亮点的边界框: {bbox}")return centroid,bbox,output_imageelse:return None
4.建模
不想再安装其它的python包了,就基于numpy写的LineRegression。
class LinearRegression:def __init__(self):self.theta = Nonedef fit(self, X, y):"""训练线性回归模型参数:X:自变量数据,形状为 (m, n),其中 m 是样本数量,n 是特征数量y:因变量数据,形状为 (m, 1)"""# 在 X 前面加一列1,以便于计算截距项X_b = np.c_[np.ones((X.shape[0], 1)), X]# 使用正规方程求解回归系数self.theta = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ ydef predict(self, X):"""对新样本进行预测参数:X:自变量数据,形状为 (m, n),其中 m 是样本数量,n 是特征数量返回值:y_pred:预测的因变量数据,形状为 (m, 1)"""if self.theta is None:raise ValueError("模型未经过训练,请先调用 fit 方法")# 在 X 前面加一列1,以便于计算截距项X_b = np.c_[np.ones((X.shape[0], 1)), X]# 使用训练得到的回归系数进行预测y_pred = X_b @ self.thetareturn y_pred
建模效果

5.全部代码
项目地址:https://gitee.com/zhang_jie_sc/auto-focus
import re
import cv2
import numpy as np
import osfrom matplotlib import pyplot as pltdef get_box(image):# 将图像转换为灰度图像gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 应用高斯模糊来减少噪声blurred = cv2.GaussianBlur(gray, (5, 5), 0)max_val = np.max(blurred)_, binary = cv2.threshold(blurred, max_val/2, 255, cv2.THRESH_BINARY)# 形态学开运算去除噪声kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))opened = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel)# 找到轮廓contours, _ = cv2.findContours(opened, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 如果找到轮廓,计算质心if contours:largest_contour = max(contours, key=cv2.contourArea)M = cv2.moments(largest_contour)if M["m00"] != 0:cx = int(M["m10"] / M["m00"])cy = int(M["m01"] / M["m00"])else:cx, cy = 0, 0centroid = (cx, cy)# 计算边界框x, y, w, h = cv2.boundingRect(largest_contour)p=10bbox = (x-p, y-p, w+2*p, h+2*p)# 在图像上绘制质心和边界框output_image = image.copy()cv2.circle(output_image, centroid, 5, (0, 255, 0), -1)x,y,w,h=bboxcv2.rectangle(output_image, (x, y), (x + w, y + h), (0, 255, 0), 2)print(f"亮点的中心位置: {centroid},亮点的边界框: {bbox}")return centroid,bbox,output_imageelse:return Nonedef get_files(dir):img_path_list = [f for f in os.listdir(dir) iff.startswith('Point') and f.endswith('.jpg')] # 获取该文件夹中所有jpg格式的图像val_list=[]for p in img_path_list:# 使用正则表达式匹配_后.前的0或0.5match = re.search(r'_(\d+(\.\d+)?)\.', p)if match:val=match.group(1)val_list.append(float(val))else:raise ValueError('{0}文件名错误,无法提取位置i学那些'.format(p))return img_path_list,val_listdef merge_intersecting_boxes(boxes):merged_boxes = []# 计算包含所有框的大框x_min = min(box[0] for box in boxes)y_min = min(box[1] for box in boxes)x_max = max(box[0] + box[2] for box in boxes)y_max = max(box[1] + box[3] for box in boxes)big_box = (x_min, y_min, x_max - x_min, y_max - y_min)# 返回大框和空的合并框列表return big_box, merged_boxesdef r2_score(y_true,y_pred):# 计算相关系数corr = np.corrcoef(y_true, y_pred)[0, 1]# 计算 R 方值r2 = corr ** 2return r2def plot_image_and_r2_zzz(image, x, y,r2,theta):# 将 BGR 格式转换为 RGB 格式image = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2RGB)# 创建一个图形和两个子图fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5), gridspec_kw={'top': 0.85})# 设置窗口标题方式二fig.canvas.manager.window.title("建模结果")# 在第一个子图中显示图片ax1.imshow(image)ax1.axis('off')ax1.set_title('Box')# 在第二个子图中显示拟合直线ax2.plot(x, y, 'o', label='Data')ax2.plot(x, x, label='Fitted Line')# 将每个数字转换为字符串,保留五位小数theta_str = "(k1={:.4f}, k2={:.4f}, b={:.4f})".format(*theta)ax2.set_title('Fitted Line (theta={}, r2={:.5f})'.format(theta_str,r2))# 添加轴标签ax2.set_xlabel('y_true')ax2.set_ylabel('y_pred')ax2.legend()# 显示图形plt.tight_layout()plt.show()class LinearRegression:def __init__(self):self.theta = Nonedef fit(self, X, y):"""训练线性回归模型参数:X:自变量数据,形状为 (m, n),其中 m 是样本数量,n 是特征数量y:因变量数据,形状为 (m, 1)"""# 在 X 前面加一列1,以便于计算截距项X_b = np.c_[np.ones((X.shape[0], 1)), X]# 使用正规方程求解回归系数self.theta = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ ydef predict(self, X):"""对新样本进行预测参数:X:自变量数据,形状为 (m, n),其中 m 是样本数量,n 是特征数量返回值:y_pred:预测的因变量数据,形状为 (m, 1)"""if self.theta is None:raise ValueError("模型未经过训练,请先调用 fit 方法")# 在 X 前面加一列1,以便于计算截距项X_b = np.c_[np.ones((X.shape[0], 1)), X]# 使用训练得到的回归系数进行预测y_pred = X_b @ self.thetareturn y_predif __name__=='__main__':file_dir="./20240531_113524"img_path_list, locs = get_files(file_dir)coors = []boxs = []for i, image_name in enumerate(img_path_list): # 逐一读取图像item = cv2.imread(os.path.join(file_dir, image_name))cneter, box, _ = get_box(item)coors.append(list(cneter))boxs.append(box)merge_box, _ = merge_intersecting_boxes(boxs)# 使用线性回归拟合数据matx = np.array(coors)arr_x = matx[:, 0]reg = LinearRegression()reg.fit(matx, locs)y_true = np.array(locs)y_pred = reg.predict(matx)r2 = r2_score(y_true, y_pred)# 输出 R^2 值draw_img = cv2.imread(os.path.join(file_dir, img_path_list[0]), cv2.IMREAD_COLOR)x, y, w, h = merge_boxcv2.rectangle(draw_img, (x, y), (x + w, y + h), (0, 255, 0), 2)plot_image_and_r2_zzz(draw_img, y_true, y_pred, r2, reg.theta)
相关文章:
基于opencv的斜光测距及python实现
1.前言 最近做了一个基于opencv的斜光测距的小项目,东西不多,但是很有意思,值得拿出来学一学。项目里面需要比较精确的定位功能,将前人matlab代码移植到python上,并且做了一些优化,简化逻辑(毕竟我是专业的…...
梯度下降算法
占楼,明天写...
第5章:软件工程
第5章:软件工程 软件工程概述 软件生命周期 软件过程 1.能力成熟度模型(CMM) CMM(能力成熟度模型)是一个评估和确定组织软件过程成熟度的模型。它最早于1987年由美国国防部软件工程研究所(SEI)提出,其目的…...
cefsharp在splitContainer.Panel2中显示调试工具DevTools(非弹出式)含源代码
一、弹出式调试工具 (ShowDevTools) ChromiumWebBrowser webbrowser; public void showDevTools(){//定位到某元素webbrowser.ShowDevTools(null, parameters.XCoord, parameters.YCoord);...
nginx部署多个项目;vue打包项目部署设置子路径访问;一个根域名(端口)配置多个子项目
本文解决: vue打包项目部署设置子路径访问;nginx部署多个子项目;一个ip/域名 端口 配置多个子项目;配置后,项目能访问,但是刷新页面就丢失的问题 注:本文需要nginx配置基础。基础不牢的可见文…...
02-部署LVS-DR群集
1.LVS-DR工作原理 LVS-DR模式,Director Server作为群集的访问入口,不作为网购使用,节点Director Server 与 Real Server 需要在同一个网络中,返回给客户端的数据不需要经过Director Server 为了响应对整个群集的访问,…...
DataWhale-吃瓜教程学习笔记 (六)
学习视频**:第4章-决策树_哔哩哔哩_bilibili 西瓜书对应章节: 第五章 5.1;5.2;5.3 文章目录 MP 神经元- 感知机模型 (分类模型)-- 损失函数定义--- 感知机学习算法 - 随机梯度下降法 - 神经网络需要解决的问…...
在docker配置Nginx环境配置
应用于商业模式集中,对于各种API的调用,对于我们想要的功能进行暴露,对于不用的进行拦截进行鉴权。用于后面的付费 开发环境 正式上线模式 一、常用命令 停止:docker stop Nginx重启:docker restart Nginx删除服务&a…...
在不修改.gitignore的情况下,忽略个人文件的提交
Git提供了一个assume-unchanged命令,可以将文件标记为“假设未更改”。这意味着Git将忽略该文件的更改,不会将其提交到仓库中。要使用该命令,只需运行以下命令: git update-index --assume-unchanged <file>其中࿰…...
【Unity navmeshaggent 组件】
【Unity navmeshaggent 组件】 组件概述: NavMeshAgent是Unity AI系统中的一个组件,它允许游戏对象(通常是一个角色或AI)在导航网格(NavMesh)上自动寻路。 组件属性: Radius:导航…...
51单片机第18步_将TIM0用作13位定时器
本章重点学习将TIM0用作13位定时器。 1、定时器0工作在模式0框图 2、定时器0工作在模式0举例 1、Keil C51中有一些关键字,需要牢记: interrupt 0:指定当前函数为外部中断0; interrupt 1:指定当前函数为定时器0中断…...
构建现代医疗:互联网医院系统源码与电子处方小程序开发教学
本篇文章,笔者将探讨互联网医院系统的源码结构和电子处方小程序的开发,帮助读者更好地理解和掌握这些前沿技术。 一、互联网医院系统源码结构 互联网医院系统通常由多个模块组成,每个模块负责不同的功能。以下是一个典型的互联网医院系统的主…...
2024亚太赛(中文赛)数学建模竞赛选题建议+初步分析
提示:DS C君认为的难度:B<C<A,开放度:C<A<B。 综合评价来看 A题适合有较强计算几何和优化能力的团队,难度较高,但适用面较窄。 B题数据处理和分析为主,适合数据科学背景的团队…...
10 - Python文件编程和异常
文件和异常 在实际开发中,常常需要对程序中的数据进行持久化操作,而实现数据持久化最直接简单的方式就是将数据保存到文件中。说到“文件”这个词,可能需要先科普一下关于文件系统的知识,对于这个概念,维基百科上给出…...
AI绘画-Stable Diffusion 原理介绍及使用
引言 好像很多朋友对AI绘图有兴趣,AI绘画背后,依旧是大模型的训练。但绘图类AI对计算机显卡有较高要求。建议先了解基本原理及如何使用,在看看如何实现自己垂直行业的绘图AI逻辑。或者作为使用者,调用已有的server接口。 首先需…...
2024年过半,新能源车谁在掉链子?
2024年过半之际,各品牌上半年的销量数据也相继出炉,是时候考察今年以来的表现了。 理想和鸿蒙智行两大增程霸主占据头两名,仍处于焦灼状态;极氪和蔚来作为高端纯电品牌紧随其后,两者之间差距很小;零跑和哪…...
离线查询+线段树,CF522D - Closest Equals
一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 522D - Closest Equals 二、解题报告 1、思路分析 考虑查询区间已经给出,我们可以离线查询 对于这类区间离线查询的问题我们通常可以通过左端点排序,然后遍历询问同时维护左区间信息…...
CTF常用sql注入(二)报错注入(普通以及双查询)
0x05 报错注入 适用于页面无正常回显,但是有报错,那么就可以使用报错注入 基础函数 floor() 向下取整函数 返回小于或等于传入参数的最大整数。换句话说,它将数字向下取整到最接近的整数值。 示例: floor(3.7) 返回 3 floor(-2…...
LabVIEW汽车ECU测试系统
开发了一个基于LabVIEW开发的汽车发动机控制单元(ECU)测试系统。该系统使用了NI的硬件和LabVIEW软件,能够自动执行ECU的功能测试和性能测试,确保其在不同工作条件下的可靠性和功能性。通过自动化测试系统,大大提高了测…...
3个让你爽到爆炸的学习工具
We OCR WeOCR 是一个基于浏览器的文字识别工具,用户可以通过上传图片来识别其中的文本信息。它是一个渐进式网络应用程序(PWA),可以在浏览器中离线使用。WeOCR 是开源的,并且基于 Tesseract OCR 引擎开发。用户无需在本…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
