基于opencv的斜光测距及python实现
1.前言
最近做了一个基于opencv的斜光测距的小项目,东西不多,但是很有意思,值得拿出来学一学。项目里面需要比较精确的定位功能,将前人matlab代码移植到python上,并且做了一些优化,简化逻辑(毕竟我是专业的程序员),也用了tkinter界面包装了一下,最后通过pyinstaller打包成程序给同事使用。
2.原理

通过使用不同的亮点位置和对应的高度进行多元线性回归建模,再对新的亮点位置进行高度预测。

如图分别是14,14.5,15,15.5对应的四张光点位置图。
3.获取亮点位置
def get_box(image):# 将图像转换为灰度图像gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 应用高斯模糊来减少噪声blurred = cv2.GaussianBlur(gray, (5, 5), 0)max_val = np.max(blurred)_, binary = cv2.threshold(blurred, max_val/2, 255, cv2.THRESH_BINARY)# 形态学开运算去除噪声kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))opened = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel)# 找到轮廓contours, _ = cv2.findContours(opened, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 如果找到轮廓,计算质心if contours:largest_contour = max(contours, key=cv2.contourArea)M = cv2.moments(largest_contour)if M["m00"] != 0:cx = int(M["m10"] / M["m00"])cy = int(M["m01"] / M["m00"])else:cx, cy = 0, 0centroid = (cx, cy)# 计算边界框x, y, w, h = cv2.boundingRect(largest_contour)p=10bbox = (x-p, y-p, w+2*p, h+2*p)# 在图像上绘制质心和边界框output_image = image.copy()cv2.circle(output_image, centroid, 5, (0, 255, 0), -1)x,y,w,h=bboxcv2.rectangle(output_image, (x, y), (x + w, y + h), (0, 255, 0), 2)print(f"亮点的中心位置: {centroid},亮点的边界框: {bbox}")return centroid,bbox,output_imageelse:return None
4.建模
不想再安装其它的python包了,就基于numpy写的LineRegression。
class LinearRegression:def __init__(self):self.theta = Nonedef fit(self, X, y):"""训练线性回归模型参数:X:自变量数据,形状为 (m, n),其中 m 是样本数量,n 是特征数量y:因变量数据,形状为 (m, 1)"""# 在 X 前面加一列1,以便于计算截距项X_b = np.c_[np.ones((X.shape[0], 1)), X]# 使用正规方程求解回归系数self.theta = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ ydef predict(self, X):"""对新样本进行预测参数:X:自变量数据,形状为 (m, n),其中 m 是样本数量,n 是特征数量返回值:y_pred:预测的因变量数据,形状为 (m, 1)"""if self.theta is None:raise ValueError("模型未经过训练,请先调用 fit 方法")# 在 X 前面加一列1,以便于计算截距项X_b = np.c_[np.ones((X.shape[0], 1)), X]# 使用训练得到的回归系数进行预测y_pred = X_b @ self.thetareturn y_pred
建模效果

5.全部代码
项目地址:https://gitee.com/zhang_jie_sc/auto-focus
import re
import cv2
import numpy as np
import osfrom matplotlib import pyplot as pltdef get_box(image):# 将图像转换为灰度图像gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 应用高斯模糊来减少噪声blurred = cv2.GaussianBlur(gray, (5, 5), 0)max_val = np.max(blurred)_, binary = cv2.threshold(blurred, max_val/2, 255, cv2.THRESH_BINARY)# 形态学开运算去除噪声kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))opened = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel)# 找到轮廓contours, _ = cv2.findContours(opened, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 如果找到轮廓,计算质心if contours:largest_contour = max(contours, key=cv2.contourArea)M = cv2.moments(largest_contour)if M["m00"] != 0:cx = int(M["m10"] / M["m00"])cy = int(M["m01"] / M["m00"])else:cx, cy = 0, 0centroid = (cx, cy)# 计算边界框x, y, w, h = cv2.boundingRect(largest_contour)p=10bbox = (x-p, y-p, w+2*p, h+2*p)# 在图像上绘制质心和边界框output_image = image.copy()cv2.circle(output_image, centroid, 5, (0, 255, 0), -1)x,y,w,h=bboxcv2.rectangle(output_image, (x, y), (x + w, y + h), (0, 255, 0), 2)print(f"亮点的中心位置: {centroid},亮点的边界框: {bbox}")return centroid,bbox,output_imageelse:return Nonedef get_files(dir):img_path_list = [f for f in os.listdir(dir) iff.startswith('Point') and f.endswith('.jpg')] # 获取该文件夹中所有jpg格式的图像val_list=[]for p in img_path_list:# 使用正则表达式匹配_后.前的0或0.5match = re.search(r'_(\d+(\.\d+)?)\.', p)if match:val=match.group(1)val_list.append(float(val))else:raise ValueError('{0}文件名错误,无法提取位置i学那些'.format(p))return img_path_list,val_listdef merge_intersecting_boxes(boxes):merged_boxes = []# 计算包含所有框的大框x_min = min(box[0] for box in boxes)y_min = min(box[1] for box in boxes)x_max = max(box[0] + box[2] for box in boxes)y_max = max(box[1] + box[3] for box in boxes)big_box = (x_min, y_min, x_max - x_min, y_max - y_min)# 返回大框和空的合并框列表return big_box, merged_boxesdef r2_score(y_true,y_pred):# 计算相关系数corr = np.corrcoef(y_true, y_pred)[0, 1]# 计算 R 方值r2 = corr ** 2return r2def plot_image_and_r2_zzz(image, x, y,r2,theta):# 将 BGR 格式转换为 RGB 格式image = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2RGB)# 创建一个图形和两个子图fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5), gridspec_kw={'top': 0.85})# 设置窗口标题方式二fig.canvas.manager.window.title("建模结果")# 在第一个子图中显示图片ax1.imshow(image)ax1.axis('off')ax1.set_title('Box')# 在第二个子图中显示拟合直线ax2.plot(x, y, 'o', label='Data')ax2.plot(x, x, label='Fitted Line')# 将每个数字转换为字符串,保留五位小数theta_str = "(k1={:.4f}, k2={:.4f}, b={:.4f})".format(*theta)ax2.set_title('Fitted Line (theta={}, r2={:.5f})'.format(theta_str,r2))# 添加轴标签ax2.set_xlabel('y_true')ax2.set_ylabel('y_pred')ax2.legend()# 显示图形plt.tight_layout()plt.show()class LinearRegression:def __init__(self):self.theta = Nonedef fit(self, X, y):"""训练线性回归模型参数:X:自变量数据,形状为 (m, n),其中 m 是样本数量,n 是特征数量y:因变量数据,形状为 (m, 1)"""# 在 X 前面加一列1,以便于计算截距项X_b = np.c_[np.ones((X.shape[0], 1)), X]# 使用正规方程求解回归系数self.theta = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ ydef predict(self, X):"""对新样本进行预测参数:X:自变量数据,形状为 (m, n),其中 m 是样本数量,n 是特征数量返回值:y_pred:预测的因变量数据,形状为 (m, 1)"""if self.theta is None:raise ValueError("模型未经过训练,请先调用 fit 方法")# 在 X 前面加一列1,以便于计算截距项X_b = np.c_[np.ones((X.shape[0], 1)), X]# 使用训练得到的回归系数进行预测y_pred = X_b @ self.thetareturn y_predif __name__=='__main__':file_dir="./20240531_113524"img_path_list, locs = get_files(file_dir)coors = []boxs = []for i, image_name in enumerate(img_path_list): # 逐一读取图像item = cv2.imread(os.path.join(file_dir, image_name))cneter, box, _ = get_box(item)coors.append(list(cneter))boxs.append(box)merge_box, _ = merge_intersecting_boxes(boxs)# 使用线性回归拟合数据matx = np.array(coors)arr_x = matx[:, 0]reg = LinearRegression()reg.fit(matx, locs)y_true = np.array(locs)y_pred = reg.predict(matx)r2 = r2_score(y_true, y_pred)# 输出 R^2 值draw_img = cv2.imread(os.path.join(file_dir, img_path_list[0]), cv2.IMREAD_COLOR)x, y, w, h = merge_boxcv2.rectangle(draw_img, (x, y), (x + w, y + h), (0, 255, 0), 2)plot_image_and_r2_zzz(draw_img, y_true, y_pred, r2, reg.theta)
相关文章:
基于opencv的斜光测距及python实现
1.前言 最近做了一个基于opencv的斜光测距的小项目,东西不多,但是很有意思,值得拿出来学一学。项目里面需要比较精确的定位功能,将前人matlab代码移植到python上,并且做了一些优化,简化逻辑(毕竟我是专业的…...
梯度下降算法
占楼,明天写...
第5章:软件工程
第5章:软件工程 软件工程概述 软件生命周期 软件过程 1.能力成熟度模型(CMM) CMM(能力成熟度模型)是一个评估和确定组织软件过程成熟度的模型。它最早于1987年由美国国防部软件工程研究所(SEI)提出,其目的…...
cefsharp在splitContainer.Panel2中显示调试工具DevTools(非弹出式)含源代码
一、弹出式调试工具 (ShowDevTools) ChromiumWebBrowser webbrowser; public void showDevTools(){//定位到某元素webbrowser.ShowDevTools(null, parameters.XCoord, parameters.YCoord);...
nginx部署多个项目;vue打包项目部署设置子路径访问;一个根域名(端口)配置多个子项目
本文解决: vue打包项目部署设置子路径访问;nginx部署多个子项目;一个ip/域名 端口 配置多个子项目;配置后,项目能访问,但是刷新页面就丢失的问题 注:本文需要nginx配置基础。基础不牢的可见文…...
02-部署LVS-DR群集
1.LVS-DR工作原理 LVS-DR模式,Director Server作为群集的访问入口,不作为网购使用,节点Director Server 与 Real Server 需要在同一个网络中,返回给客户端的数据不需要经过Director Server 为了响应对整个群集的访问,…...
DataWhale-吃瓜教程学习笔记 (六)
学习视频**:第4章-决策树_哔哩哔哩_bilibili 西瓜书对应章节: 第五章 5.1;5.2;5.3 文章目录 MP 神经元- 感知机模型 (分类模型)-- 损失函数定义--- 感知机学习算法 - 随机梯度下降法 - 神经网络需要解决的问…...
在docker配置Nginx环境配置
应用于商业模式集中,对于各种API的调用,对于我们想要的功能进行暴露,对于不用的进行拦截进行鉴权。用于后面的付费 开发环境 正式上线模式 一、常用命令 停止:docker stop Nginx重启:docker restart Nginx删除服务&a…...
在不修改.gitignore的情况下,忽略个人文件的提交
Git提供了一个assume-unchanged命令,可以将文件标记为“假设未更改”。这意味着Git将忽略该文件的更改,不会将其提交到仓库中。要使用该命令,只需运行以下命令: git update-index --assume-unchanged <file>其中࿰…...
【Unity navmeshaggent 组件】
【Unity navmeshaggent 组件】 组件概述: NavMeshAgent是Unity AI系统中的一个组件,它允许游戏对象(通常是一个角色或AI)在导航网格(NavMesh)上自动寻路。 组件属性: Radius:导航…...
51单片机第18步_将TIM0用作13位定时器
本章重点学习将TIM0用作13位定时器。 1、定时器0工作在模式0框图 2、定时器0工作在模式0举例 1、Keil C51中有一些关键字,需要牢记: interrupt 0:指定当前函数为外部中断0; interrupt 1:指定当前函数为定时器0中断…...
构建现代医疗:互联网医院系统源码与电子处方小程序开发教学
本篇文章,笔者将探讨互联网医院系统的源码结构和电子处方小程序的开发,帮助读者更好地理解和掌握这些前沿技术。 一、互联网医院系统源码结构 互联网医院系统通常由多个模块组成,每个模块负责不同的功能。以下是一个典型的互联网医院系统的主…...
2024亚太赛(中文赛)数学建模竞赛选题建议+初步分析
提示:DS C君认为的难度:B<C<A,开放度:C<A<B。 综合评价来看 A题适合有较强计算几何和优化能力的团队,难度较高,但适用面较窄。 B题数据处理和分析为主,适合数据科学背景的团队…...
10 - Python文件编程和异常
文件和异常 在实际开发中,常常需要对程序中的数据进行持久化操作,而实现数据持久化最直接简单的方式就是将数据保存到文件中。说到“文件”这个词,可能需要先科普一下关于文件系统的知识,对于这个概念,维基百科上给出…...
AI绘画-Stable Diffusion 原理介绍及使用
引言 好像很多朋友对AI绘图有兴趣,AI绘画背后,依旧是大模型的训练。但绘图类AI对计算机显卡有较高要求。建议先了解基本原理及如何使用,在看看如何实现自己垂直行业的绘图AI逻辑。或者作为使用者,调用已有的server接口。 首先需…...
2024年过半,新能源车谁在掉链子?
2024年过半之际,各品牌上半年的销量数据也相继出炉,是时候考察今年以来的表现了。 理想和鸿蒙智行两大增程霸主占据头两名,仍处于焦灼状态;极氪和蔚来作为高端纯电品牌紧随其后,两者之间差距很小;零跑和哪…...
离线查询+线段树,CF522D - Closest Equals
一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 522D - Closest Equals 二、解题报告 1、思路分析 考虑查询区间已经给出,我们可以离线查询 对于这类区间离线查询的问题我们通常可以通过左端点排序,然后遍历询问同时维护左区间信息…...
CTF常用sql注入(二)报错注入(普通以及双查询)
0x05 报错注入 适用于页面无正常回显,但是有报错,那么就可以使用报错注入 基础函数 floor() 向下取整函数 返回小于或等于传入参数的最大整数。换句话说,它将数字向下取整到最接近的整数值。 示例: floor(3.7) 返回 3 floor(-2…...
LabVIEW汽车ECU测试系统
开发了一个基于LabVIEW开发的汽车发动机控制单元(ECU)测试系统。该系统使用了NI的硬件和LabVIEW软件,能够自动执行ECU的功能测试和性能测试,确保其在不同工作条件下的可靠性和功能性。通过自动化测试系统,大大提高了测…...
3个让你爽到爆炸的学习工具
We OCR WeOCR 是一个基于浏览器的文字识别工具,用户可以通过上传图片来识别其中的文本信息。它是一个渐进式网络应用程序(PWA),可以在浏览器中离线使用。WeOCR 是开源的,并且基于 Tesseract OCR 引擎开发。用户无需在本…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
