当前位置: 首页 > news >正文

【MindSpore学习打卡】应用实践-计算机视觉-深入解析 Vision Transformer(ViT):从原理到实践

在近年来的深度学习领域,Transformer模型凭借其在自然语言处理(NLP)中的卓越表现,迅速成为研究热点。尤其是基于自注意力(Self-Attention)机制的模型,更是推动了NLP的飞速发展。然而,随着研究的深入,Transformer模型不仅在NLP领域大放异彩,还被引入到计算机视觉领域,形成了Vision Transformer(ViT)。ViT模型在不依赖传统卷积神经网络(CNN)的情况下,依然能够在图像分类任务中取得优异的效果。本文将深入解析ViT模型的结构、特点,并通过代码示例展示如何使用MindSpore框架实现ViT模型的训练、验证和推理。

ViT模型结构

ViT模型的主体结构基于Transformer模型的编码器(Encoder)部分,其整体结构如下图所示:

vit-architecture

模型特点

为什么要使用Patch Embedding?

在传统的Transformer模型中,输入通常是一维的词向量序列,而图像数据是二维的像素矩阵。为了将图像数据转换为Transformer可以处理的形式,我们需要将图像划分为多个小块(patch),并将每个patch转换为一维向量。这一过程称为Patch Embedding。通过这种方式,我们可以将图像数据转换为类似于词向量的形式,从而利用Transformer模型处理图像数据。
为什么要使用位置编码(Position Embedding)?

由于Transformer模型在处理输入序列时不考虑顺序信息,因此在图像数据中,patch之间的空间关系可能会丢失。为了解决这个问题,我们引入了位置编码(Position Embedding),它为每个patch增加了位置信息,使得模型能够识别不同patch之间的空间关系。这对于保留图像的空间结构信息非常重要。

  1. Patch Embedding:输入图像被划分为多个patch(图像块),然后将每个二维patch转换为一维向量,并加上类别向量和位置向量作为模型输入。
  2. Transformer Encoder:模型主体的Block结构基于Transformer的Encoder部分,主要结构是多头注意力(Multi-Head Attention)和前馈神经网络(Feed Forward)。
  3. 分类头(Head):在Transformer Encoder堆叠后接一个全连接层,用于分类。

环境准备与数据读取

开始实验之前,请确保本地已经安装了Python环境和MindSpore。

首先下载本案例的数据集,该数据集是从ImageNet中筛选出来的子集。数据集路径结构如下:

.dataset/├── ILSVRC2012_devkit_t12.tar.gz├── train/├── infer/└── val/
from download import download
import os
import mindspore as ms
from mindspore.dataset import ImageFolderDataset
import mindspore.dataset.vision as transforms# 下载数据集
dataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/vit_imagenet_dataset.zip"
path = "./"
path = download(dataset_url, path, kind="zip", replace=True)data_path = './dataset/'
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]dataset_train = ImageFolderDataset(os.path.join(data_path, "train"), shuffle=True)trans_train = [transforms.RandomCropDecodeResize(size=224, scale=(0.08, 1.0), ratio=(0.75, 1.333)),transforms.RandomHorizontalFlip(prob=0.5),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_train = dataset_train.map(operations=trans_train, input_columns=["image"])
dataset_train = dataset_train.batch(batch_size=16, drop_remainder=True)

Transformer基本原理

Transformer模型源于2017年的一篇文章,其主要结构为多个编码器和解码器模块。编码器和解码器由多头注意力(Multi-Head Attention)、前馈神经网络(Feed Forward)、归一化层(Normalization)和残差连接(Residual Connection)组成。

Self-Attention机制

Self-Attention机制是Transformer的核心,其主要步骤如下:

  1. 输入向量映射:将输入向量映射成Query(Q)、Key(K)、Value(V)三个向量。
  2. 计算注意力权重:通过点乘计算Query和Key的相似性,并通过Softmax函数归一化。
  3. 加权求和:使用注意力权重对Value进行加权求和,得到最终的Attention输出。

以下是Self-Attention的代码实现:

from mindspore import nn, opsclass Attention(nn.Cell):def __init__(self, dim: int, num_heads: int = 8, keep_prob: float = 1.0, attention_keep_prob: float = 1.0):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // num_headsself.scale = ms.Tensor(head_dim ** -0.5)self.qkv = nn.Dense(dim, dim * 3)self.attn_drop = nn.Dropout(p=1.0-attention_keep_prob)self.out = nn.Dense(dim, dim)self.out_drop = nn.Dropout(p=1.0-keep_prob)self.attn_matmul_v = ops.BatchMatMul()self.q_matmul_k = ops.BatchMatMul(transpose_b=True)self.softmax = nn.Softmax(axis=-1)def construct(self, x):b, n, c = x.shapeqkv = self.qkv(x)qkv = ops.reshape(qkv, (b, n, 3, self.num_heads, c // self.num_heads))qkv = ops.transpose(qkv, (2, 0, 3, 1, 4))q, k, v = ops.unstack(qkv, axis=0)attn = self.q_matmul_k(q, k)attn = ops.mul(attn, self.scale)attn = self.softmax(attn)attn = self.attn_drop(attn)out = self.attn_matmul_v(attn, v)out = ops.transpose(out, (0, 2, 1, 3))out = ops.reshape(out, (b, n, c))out = self.out(out)out = self.out_drop(out)return out

Transformer Encoder

为什么要使用残差连接(Residual Connection)和归一化层(Normalization Layer)?

在深层神经网络中,随着层数的增加,梯度消失和梯度爆炸的问题变得越来越严重。残差连接通过在每一层加上输入的跳跃连接,可以有效缓解这些问题,确保信息能够顺利传递。此外,归一化层(如LayerNorm)可以加速模型的训练,并提高模型的稳定性和泛化能力。这些技术的结合,使得Transformer模型能够在更深的层次上进行有效的训练。

Transformer Encoder由多层Self-Attention和前馈神经网络(Feed Forward)组成,通过残差连接和归一化层增强模型的训练效果和泛化能力。

class FeedForward(nn.Cell):def __init__(self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, activation: nn.Cell = nn.GELU, keep_prob: float = 1.0):super(FeedForward, self).__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.dense1 = nn.Dense(in_features, hidden_features)self.activation = activation()self.dense2 = nn.Dense(hidden_features, out_features)self.dropout = nn.Dropout(p=1.0-keep_prob)def construct(self, x):x = self.dense1(x)x = self.activation(x)x = self.dropout(x)x = self.dense2(x)x = self.dropout(x)return xclass ResidualCell(nn.Cell):def __init__(self, cell):super(ResidualCell, self).__init__()self.cell = celldef construct(self, x):return self.cell(x) + xclass TransformerEncoder(nn.Cell):def __init__(self, dim: int, num_layers: int, num_heads: int, mlp_dim: int, keep_prob: float = 1., attention_keep_prob: float = 1.0, drop_path_keep_prob: float = 1.0, activation: nn.Cell = nn.GELU, norm: nn.Cell = nn.LayerNorm):super(TransformerEncoder, self).__init__()layers = []for _ in range(num_layers):normalization1 = norm((dim,))normalization2 = norm((dim,))attention = Attention(dim=dim, num_heads=num_heads, keep_prob=keep_prob, attention_keep_prob=attention_keep_prob)feedforward = FeedForward(in_features=dim, hidden_features=mlp_dim, activation=activation, keep_prob=keep_prob)layers.append(nn.SequentialCell([ResidualCell(nn.SequentialCell([normalization1, attention])), ResidualCell(nn.SequentialCell([normalization2, feedforward]))]))self.layers = nn.SequentialCell(layers)def construct(self, x):return self.layers(x)

ViT模型的输入

ViT模型通过将输入图像划分为多个patch,将每个patch转换为一维向量,并加上类别向量和位置向量作为模型输入。以下是Patch Embedding的代码实现:

class PatchEmbedding(nn.Cell):MIN_NUM_PATCHES = 4def __init__(self, image_size: int = 224, patch_size: int = 16, embed_dim: int = 768, input_channels: int = 3):super(PatchEmbedding, self).__init__()self.image_size = image_sizeself.patch_size = patch_sizeself.num_patches = (image_size // patch_size) ** 2self.conv = nn.Conv2d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size, has_bias=True)def construct(self, x):x = self.conv(x)b, c, h, w = x.shapex = ops.reshape(x, (b, c, h * w))x = ops.transpose(x, (0, 2, 1))return x

整体构建ViT

以下代码构建了一个完整的ViT模型:

from mindspore.common.initializer import Normal
from mindspore.common.initializer import initializer
from mindspore import Parameterdef init(init_type, shape, dtype, name, requires_grad):initial = initializer(init_type, shape, dtype).init_data()return Parameter(initial, name=name, requires_grad=requires_grad)class ViT(nn.Cell):def __init__(self, image_size: int = 224, input_channels: int = 3, patch_size: int = 16, embed_dim: int = 768, num_layers: int = 12, num_heads: int = 12, mlp_dim: int = 3072, keep_prob: float = 1.0, attention_keep_prob: float = 1.0, drop_path_keep_prob: float = 1.0, activation: nn.Cell = nn.GELU, norm: Optional[nn.Cell] = nn.LayerNorm, pool: str = 'cls') -> None:super(ViT, self).__init__()self.patch_embedding = PatchEmbedding(image_size=image_size, patch_size=patch_size, embed_dim=embed_dim, input_channels=input_channels)num_patches = self.patch_embedding.num_patchesself.cls_token = init(init_type=Normal(sigma=1.0), shape=(1, 1, embed_dim), dtype=ms.float32, name='cls', requires_grad=True)self.pos_embedding = init(init_type=Normal(sigma=1.0), shape=(1, num_patches + 1, embed_dim), dtype=ms.float32, name='pos_embedding', requires_grad=True)self.pool = poolself.pos_dropout = nn.Dropout(p=1.0-keep_prob)self.norm = norm((embed_dim,))self.transformer = TransformerEncoder(dim=embed_dim, num_layers=num_layers, num_heads=num_heads, mlp_dim=mlp_dim, keep_prob=keep_prob, attention_keep_prob=attention_keep_prob, drop_path_keep_prob=drop_path_keep_prob, activation=activation, norm=norm)self.dropout = nn.Dropout(p=1.0-keep_prob)self.dense = nn.Dense(embed_dim, num_classes)def construct(self, x):x = self.patch_embedding(x)cls_tokens = ops.tile(self.cls_token.astype(x.dtype), (x.shape[0], 1, 1))x = ops.concat((cls_tokens, x), axis=1)x += self.pos_embeddingx = self.pos_dropout(x)x = self.transformer(x)x = self.norm(x)x = x[:, 0]if self.training:x = self.dropout(x)x = self.dense(x)return x

模型训练与推理

模型训练

模型训练前,需要设定损失函数、优化器和回调函数。以下是训练ViT模型的代码:

from mindspore.nn import LossBase
from mindspore.train import LossMonitor, TimeMonitor, CheckpointConfig, ModelCheckpoint
from mindspore import train# 定义超参数
epoch_size = 10
momentum = 0.9
num_classes = 1000
resize = 224
step_size = dataset_train.get_dataset_size()# 构建模型
network = ViT()# 加载预训练模型参数
vit_url = "https://download.mindspore.cn/vision/classification/vit_b_16_224.ckpt"
path = "./ckpt/vit_b_16_224.ckpt"
vit_path = download(vit_url, path, replace=True)
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)# 定义学习率
lr = nn.cosine_decay_lr(min_lr=float(0), max_lr=0.00005, total_step=epoch_size * step_size, step_per_epoch=step_size, decay_epoch=10)# 定义优化器
network_opt = nn.Adam(network.trainable_params(), lr, momentum)# 定义损失函数
class CrossEntropySmooth(LossBase):def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):super(CrossEntropySmooth, self).__init__()self.onehot = ops.OneHot()self.sparse = sparseself.on_value = ms.Tensor(1.0 - smooth_factor, ms.float32)self.off_value = ms.Tensor(1.0 * smooth_factor / (num_classes - 1), ms.float32)self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)def construct(self, logit, label):if self.sparse:label = self.onehot(label, ops.shape(logit)[1], self.on_value, self.off_value)loss = self.ce(logit, label)return lossnetwork_loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=0.1, num_classes=num_classes)# 设置检查点
ckpt_config = CheckpointConfig(save_checkpoint_steps=step_size, keep_checkpoint_max=100)
ckpt_callback = ModelCheckpoint(prefix='vit_b_16', directory='./ViT', config=ckpt_config)# 初始化模型
ascend_target = (ms.get_context("device_target") == "Ascend")
if ascend_target:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O2")
else:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O0")# 训练模型
model.train(epoch_size, dataset_train, callbacks=[ckpt_callback, LossMonitor(125), TimeMonitor(125)], dataset_sink_mode=False)

在这里插入图片描述

模型验证

模型验证过程主要应用了ImageFolderDataset,CrossEntropySmooth和Model等接口。以下是验证ViT模型的代码:

dataset_val = ImageFolderDataset(os.path.join(data_path, "val"), shuffle=True)trans_val = [transforms.Decode(),transforms.Resize(224 + 32),transforms.CenterCrop(224),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_val = dataset_val.map(operations=trans_val, input_columns=["image"])
dataset_val = dataset_val.batch(batch_size=16, drop_remainder=True)# 构建模型
network = ViT()# 加载预训练模型参数
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)network_loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=0.1, num_classes=num_classes)# 定义评价指标
eval_metrics = {'Top_1_Accuracy': train.Top1CategoricalAccuracy(), 'Top_5_Accuracy': train.Top5CategoricalAccuracy()}if ascend_target:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O2")
else:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O0")# 验证模型
result = model.eval(dataset_val)
print(result)

模型推理

在进行模型推理之前,首先要定义一个对推理图片进行数据预处理的方法。以下是推理ViT模型的代码:

dataset_infer = ImageFolderDataset(os.path.join(data_path, "infer"), shuffle=True)trans_infer = [transforms.Decode(),transforms.Resize([224, 224]),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_infer = dataset_infer.map(operations=trans_infer, input_columns=["image"], num_parallel_workers=1)
dataset_infer = dataset_infer.batch(1)# 读取推理数据
for i, image in enumerate(dataset_infer.create_dict_iterator(output_numpy=True)):image = image["image"]image = ms.Tensor(image)prob = model.predict(image)label = np.argmax(prob.asnumpy(), axis=1)mapping = index2label()output = {int(label): mapping[int(label)]}print(output)show_result(img="./dataset/infer/n01440764/ILSVRC2012_test_00000279.JPEG", result=output, out_file="./dataset/infer/ILSVRC2012_test_00000279.JPEG")

在这里插入图片描述
在这里插入图片描述

相关文章:

【MindSpore学习打卡】应用实践-计算机视觉-深入解析 Vision Transformer(ViT):从原理到实践

在近年来的深度学习领域,Transformer模型凭借其在自然语言处理(NLP)中的卓越表现,迅速成为研究热点。尤其是基于自注意力(Self-Attention)机制的模型,更是推动了NLP的飞速发展。然而&#xff0c…...

Debezium系列之:支持在一个数据库connector采集中过滤某些表的删除事件

Debezium系列之:支持在一个数据库connector采集中过滤某些表的删除事件 一、需求二、相关技术三、参数设置四、消费数据一、需求 在一个数据库的connector中采集了多张表,部分表存在数据归档的业务场景,会定期从表中删除历史数据,希望能过滤掉存在数据归档这些表的删除事件…...

SQL Server端口配置指南:最佳实践与技巧

1. 引言 SQL Server通常使用默认端口1433进行通信。为了提高安全性和性能,正确配置SQL Server的端口非常重要。本指南将帮助您了解如何配置和优化SQL Server的端口设置,以满足不同环境和需求。 2. 端口配置基础 2.1 默认端口 SQL Server的默认端口是…...

FastGPT 报错:undefined 该令牌无权使用模型:gpt-3.5-turbo (request id: xxx)

目录 一、FastGPT 报错 二、解决方法 一、FastGPT 报错 进行对话时 FastGPT 报错如下所示。 [Error] 2024-07-01 09:25:23 sse error: undefined 该令牌无权使用模型:gpt-3.5-turbo (request id: xxxxx) {message: 403 该令牌无权使用模型:gpt-3.5-turbo (request id: x…...

springboot系列八: springboot静态资源访问,Rest风格请求处理, 接收参数相关注解

文章目录 WEB开发-静态资源访问官方文档基本介绍快速入门注意事项和细节 Rest风格请求处理基本介绍应用实例注意事项和细节思考题 接收参数相关注解基本介绍应用实例PathVariableRequestHeaderRequestParamCookieValueRequestBodyRequestAttributeSessionAttribute ⬅️ 上一篇…...

# 职场生活之道:善于团结

在职场这个大舞台上,每个人都是演员,也是观众。要想在这个舞台上站稳脚跟,除了专业技能,更要学会如何与人相处,如何团结他人。团结,是职场生存的重要法则之一。 1. 主动团结:多一个朋友&#x…...

go sync包(五) WaitGroup

WaitGroup sync.WaitGroup 可以等待一组 Goroutine 的返回,一个比较常见的使用场景是批量发出 RPC 或者 HTTP 请求: requests : []*Request{...} wg : &sync.WaitGroup{} wg.Add(len(requests))for _, request : range requests {go func(r *Reque…...

基于深度学习的相机内参标定

基于深度学习的相机内参标定 相机内参标定(Camera Intrinsic Calibration)是计算机视觉中的关键步骤,用于确定相机的内部参数(如焦距、主点位置、畸变系数等)。传统的标定方法依赖于已知尺寸的标定板,通常…...

适合金融行业的国产传输软件应该是怎样的?

对于金融行业来说,正常业务开展离不开文件传输场景,一般来说,金融行业常用的文件传输工具有IM通讯、邮件、自建文件传输系统、FTP应用、U盘等,这些传输工具可以基础实现金融机构的文件传输需求,但也存在如下问题&#…...

昇思25天学习打卡营第9天|MindSpore使用静态图加速(基于context的开启方式)

在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。 在静态图模式下,MindSpore通过源码转换的方式,将Python的源码转换成中间表达IR(Intermediate Repr…...

class类和style内联样式的绑定

这里的绑定其实就是v-bind的绑定,如代码所示,div后面的引号就是v-bind绑定,然后大括号将整个对象括起来,对象内先是属性,属性后接的是变量,这个变量是定义在script中的,后通过这个变量&#xff…...

3033.力扣每日一题7/5 Java

博客主页:音符犹如代码系列专栏:算法练习关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ 目录 思路 解题方法 时间复杂度 空间复杂度 Code 思路 首先创建一个与…...

GPT-5:下一代AI如何彻底改变我们的未来

GPT-5 发布前瞻:技术突破与未来展望 随着科技的飞速发展,人工智能领域不断迎来新的突破。根据最新消息,OpenAI 的首席技术官米拉穆拉蒂在一次采访中确认,GPT-5 将在一年半后发布,并描述了其从 GPT-4 到 GPT-5 的飞跃如…...

重载一元运算符

自增运算符 #include<iostream> using namespace std; class CGirl { public:string name;int ranking;CGirl() { name "zhongge"; ranking 5; }void show() const{ cout << "name : "<<name << " , ranking : " <…...

10元 DIY 一个柔性灯丝氛围灯

之前TikTok上特别火的线性氛围灯Augelight刚出来的时候一度卖到80多美金&#xff0c;国内1688也能到400多人民币。 随着各路国内厂商和DIY创客的跟进&#xff0c;功能变多的同时价格一路下滑&#xff0c;虽然有的质感的确感人&#xff0c;但是便宜啊。 甚至关注的up有把成本搞到…...

表单自定义组件 - 可选择卡片SelectCard

import React from react; import styles from ./index.module.less;type OptionsType {/*** 每个item渲染一行&#xff0c;第0项为标题*/labels?: any[];/*** 自定义渲染内容*/label?: string | React.ReactNode;value: any; }; interface IProps {value?: any;onChange?…...

Ubuntu / Debian安装FTP服务

本章教程,记录在Ubuntu中安装FTP服务的具体步骤。FTP默认端口:21 1、安装 pure-ftpd sudo apt-get install pure-ftpd2、修改默认配置 # 与 centos 不同,这里需要在 /etc/pure-ftpd/conf 文件夹下执行下列命令,增加对应配置文件: # 创建 /etc/pure-ftpd/conf/PureDB 文件…...

若依 Vue 前端分离 3.8.8 版中生成的前端代码中关于下拉框只有下拉箭头的问题

生成代码修改前 <el-form-item label"课程学科" prop"subject"><el-select v-model"queryParams.subject" placeholder"请选择课程学科" clearable><el-optionv-for"dict in course_subject":key"dict…...

C++把一个类封装成动态链接库

一、步骤 1. 创建类头文件 首先&#xff0c;定义你要封装的类。例如&#xff0c;创建一个名为MyClass的类&#xff1a; // MyClass.h #pragma once#ifdef MYCLASS_EXPORTS #define MYCLASS_API __declspec(dllexport) #else #define MYCLASS_API __declspec(dllimport) #end…...

每天一个项目管理概念之项目章程

项目管理中&#xff0c;项目章程扮演着至关重要的角色。它是项目正式启动的标志&#xff0c;为项目的执行提供法律和组织上的认可。项目章程是项目管理知识体系&#xff08;PMBOK&#xff09;中定义的关键文档之一&#xff0c;对于确保项目的顺利进行具有决定性的影响。 定义与…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...