当前位置: 首页 > news >正文

【MindSpore学习打卡】应用实践-计算机视觉-深入解析 Vision Transformer(ViT):从原理到实践

在近年来的深度学习领域,Transformer模型凭借其在自然语言处理(NLP)中的卓越表现,迅速成为研究热点。尤其是基于自注意力(Self-Attention)机制的模型,更是推动了NLP的飞速发展。然而,随着研究的深入,Transformer模型不仅在NLP领域大放异彩,还被引入到计算机视觉领域,形成了Vision Transformer(ViT)。ViT模型在不依赖传统卷积神经网络(CNN)的情况下,依然能够在图像分类任务中取得优异的效果。本文将深入解析ViT模型的结构、特点,并通过代码示例展示如何使用MindSpore框架实现ViT模型的训练、验证和推理。

ViT模型结构

ViT模型的主体结构基于Transformer模型的编码器(Encoder)部分,其整体结构如下图所示:

vit-architecture

模型特点

为什么要使用Patch Embedding?

在传统的Transformer模型中,输入通常是一维的词向量序列,而图像数据是二维的像素矩阵。为了将图像数据转换为Transformer可以处理的形式,我们需要将图像划分为多个小块(patch),并将每个patch转换为一维向量。这一过程称为Patch Embedding。通过这种方式,我们可以将图像数据转换为类似于词向量的形式,从而利用Transformer模型处理图像数据。
为什么要使用位置编码(Position Embedding)?

由于Transformer模型在处理输入序列时不考虑顺序信息,因此在图像数据中,patch之间的空间关系可能会丢失。为了解决这个问题,我们引入了位置编码(Position Embedding),它为每个patch增加了位置信息,使得模型能够识别不同patch之间的空间关系。这对于保留图像的空间结构信息非常重要。

  1. Patch Embedding:输入图像被划分为多个patch(图像块),然后将每个二维patch转换为一维向量,并加上类别向量和位置向量作为模型输入。
  2. Transformer Encoder:模型主体的Block结构基于Transformer的Encoder部分,主要结构是多头注意力(Multi-Head Attention)和前馈神经网络(Feed Forward)。
  3. 分类头(Head):在Transformer Encoder堆叠后接一个全连接层,用于分类。

环境准备与数据读取

开始实验之前,请确保本地已经安装了Python环境和MindSpore。

首先下载本案例的数据集,该数据集是从ImageNet中筛选出来的子集。数据集路径结构如下:

.dataset/├── ILSVRC2012_devkit_t12.tar.gz├── train/├── infer/└── val/
from download import download
import os
import mindspore as ms
from mindspore.dataset import ImageFolderDataset
import mindspore.dataset.vision as transforms# 下载数据集
dataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/vit_imagenet_dataset.zip"
path = "./"
path = download(dataset_url, path, kind="zip", replace=True)data_path = './dataset/'
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]dataset_train = ImageFolderDataset(os.path.join(data_path, "train"), shuffle=True)trans_train = [transforms.RandomCropDecodeResize(size=224, scale=(0.08, 1.0), ratio=(0.75, 1.333)),transforms.RandomHorizontalFlip(prob=0.5),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_train = dataset_train.map(operations=trans_train, input_columns=["image"])
dataset_train = dataset_train.batch(batch_size=16, drop_remainder=True)

Transformer基本原理

Transformer模型源于2017年的一篇文章,其主要结构为多个编码器和解码器模块。编码器和解码器由多头注意力(Multi-Head Attention)、前馈神经网络(Feed Forward)、归一化层(Normalization)和残差连接(Residual Connection)组成。

Self-Attention机制

Self-Attention机制是Transformer的核心,其主要步骤如下:

  1. 输入向量映射:将输入向量映射成Query(Q)、Key(K)、Value(V)三个向量。
  2. 计算注意力权重:通过点乘计算Query和Key的相似性,并通过Softmax函数归一化。
  3. 加权求和:使用注意力权重对Value进行加权求和,得到最终的Attention输出。

以下是Self-Attention的代码实现:

from mindspore import nn, opsclass Attention(nn.Cell):def __init__(self, dim: int, num_heads: int = 8, keep_prob: float = 1.0, attention_keep_prob: float = 1.0):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // num_headsself.scale = ms.Tensor(head_dim ** -0.5)self.qkv = nn.Dense(dim, dim * 3)self.attn_drop = nn.Dropout(p=1.0-attention_keep_prob)self.out = nn.Dense(dim, dim)self.out_drop = nn.Dropout(p=1.0-keep_prob)self.attn_matmul_v = ops.BatchMatMul()self.q_matmul_k = ops.BatchMatMul(transpose_b=True)self.softmax = nn.Softmax(axis=-1)def construct(self, x):b, n, c = x.shapeqkv = self.qkv(x)qkv = ops.reshape(qkv, (b, n, 3, self.num_heads, c // self.num_heads))qkv = ops.transpose(qkv, (2, 0, 3, 1, 4))q, k, v = ops.unstack(qkv, axis=0)attn = self.q_matmul_k(q, k)attn = ops.mul(attn, self.scale)attn = self.softmax(attn)attn = self.attn_drop(attn)out = self.attn_matmul_v(attn, v)out = ops.transpose(out, (0, 2, 1, 3))out = ops.reshape(out, (b, n, c))out = self.out(out)out = self.out_drop(out)return out

Transformer Encoder

为什么要使用残差连接(Residual Connection)和归一化层(Normalization Layer)?

在深层神经网络中,随着层数的增加,梯度消失和梯度爆炸的问题变得越来越严重。残差连接通过在每一层加上输入的跳跃连接,可以有效缓解这些问题,确保信息能够顺利传递。此外,归一化层(如LayerNorm)可以加速模型的训练,并提高模型的稳定性和泛化能力。这些技术的结合,使得Transformer模型能够在更深的层次上进行有效的训练。

Transformer Encoder由多层Self-Attention和前馈神经网络(Feed Forward)组成,通过残差连接和归一化层增强模型的训练效果和泛化能力。

class FeedForward(nn.Cell):def __init__(self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, activation: nn.Cell = nn.GELU, keep_prob: float = 1.0):super(FeedForward, self).__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.dense1 = nn.Dense(in_features, hidden_features)self.activation = activation()self.dense2 = nn.Dense(hidden_features, out_features)self.dropout = nn.Dropout(p=1.0-keep_prob)def construct(self, x):x = self.dense1(x)x = self.activation(x)x = self.dropout(x)x = self.dense2(x)x = self.dropout(x)return xclass ResidualCell(nn.Cell):def __init__(self, cell):super(ResidualCell, self).__init__()self.cell = celldef construct(self, x):return self.cell(x) + xclass TransformerEncoder(nn.Cell):def __init__(self, dim: int, num_layers: int, num_heads: int, mlp_dim: int, keep_prob: float = 1., attention_keep_prob: float = 1.0, drop_path_keep_prob: float = 1.0, activation: nn.Cell = nn.GELU, norm: nn.Cell = nn.LayerNorm):super(TransformerEncoder, self).__init__()layers = []for _ in range(num_layers):normalization1 = norm((dim,))normalization2 = norm((dim,))attention = Attention(dim=dim, num_heads=num_heads, keep_prob=keep_prob, attention_keep_prob=attention_keep_prob)feedforward = FeedForward(in_features=dim, hidden_features=mlp_dim, activation=activation, keep_prob=keep_prob)layers.append(nn.SequentialCell([ResidualCell(nn.SequentialCell([normalization1, attention])), ResidualCell(nn.SequentialCell([normalization2, feedforward]))]))self.layers = nn.SequentialCell(layers)def construct(self, x):return self.layers(x)

ViT模型的输入

ViT模型通过将输入图像划分为多个patch,将每个patch转换为一维向量,并加上类别向量和位置向量作为模型输入。以下是Patch Embedding的代码实现:

class PatchEmbedding(nn.Cell):MIN_NUM_PATCHES = 4def __init__(self, image_size: int = 224, patch_size: int = 16, embed_dim: int = 768, input_channels: int = 3):super(PatchEmbedding, self).__init__()self.image_size = image_sizeself.patch_size = patch_sizeself.num_patches = (image_size // patch_size) ** 2self.conv = nn.Conv2d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size, has_bias=True)def construct(self, x):x = self.conv(x)b, c, h, w = x.shapex = ops.reshape(x, (b, c, h * w))x = ops.transpose(x, (0, 2, 1))return x

整体构建ViT

以下代码构建了一个完整的ViT模型:

from mindspore.common.initializer import Normal
from mindspore.common.initializer import initializer
from mindspore import Parameterdef init(init_type, shape, dtype, name, requires_grad):initial = initializer(init_type, shape, dtype).init_data()return Parameter(initial, name=name, requires_grad=requires_grad)class ViT(nn.Cell):def __init__(self, image_size: int = 224, input_channels: int = 3, patch_size: int = 16, embed_dim: int = 768, num_layers: int = 12, num_heads: int = 12, mlp_dim: int = 3072, keep_prob: float = 1.0, attention_keep_prob: float = 1.0, drop_path_keep_prob: float = 1.0, activation: nn.Cell = nn.GELU, norm: Optional[nn.Cell] = nn.LayerNorm, pool: str = 'cls') -> None:super(ViT, self).__init__()self.patch_embedding = PatchEmbedding(image_size=image_size, patch_size=patch_size, embed_dim=embed_dim, input_channels=input_channels)num_patches = self.patch_embedding.num_patchesself.cls_token = init(init_type=Normal(sigma=1.0), shape=(1, 1, embed_dim), dtype=ms.float32, name='cls', requires_grad=True)self.pos_embedding = init(init_type=Normal(sigma=1.0), shape=(1, num_patches + 1, embed_dim), dtype=ms.float32, name='pos_embedding', requires_grad=True)self.pool = poolself.pos_dropout = nn.Dropout(p=1.0-keep_prob)self.norm = norm((embed_dim,))self.transformer = TransformerEncoder(dim=embed_dim, num_layers=num_layers, num_heads=num_heads, mlp_dim=mlp_dim, keep_prob=keep_prob, attention_keep_prob=attention_keep_prob, drop_path_keep_prob=drop_path_keep_prob, activation=activation, norm=norm)self.dropout = nn.Dropout(p=1.0-keep_prob)self.dense = nn.Dense(embed_dim, num_classes)def construct(self, x):x = self.patch_embedding(x)cls_tokens = ops.tile(self.cls_token.astype(x.dtype), (x.shape[0], 1, 1))x = ops.concat((cls_tokens, x), axis=1)x += self.pos_embeddingx = self.pos_dropout(x)x = self.transformer(x)x = self.norm(x)x = x[:, 0]if self.training:x = self.dropout(x)x = self.dense(x)return x

模型训练与推理

模型训练

模型训练前,需要设定损失函数、优化器和回调函数。以下是训练ViT模型的代码:

from mindspore.nn import LossBase
from mindspore.train import LossMonitor, TimeMonitor, CheckpointConfig, ModelCheckpoint
from mindspore import train# 定义超参数
epoch_size = 10
momentum = 0.9
num_classes = 1000
resize = 224
step_size = dataset_train.get_dataset_size()# 构建模型
network = ViT()# 加载预训练模型参数
vit_url = "https://download.mindspore.cn/vision/classification/vit_b_16_224.ckpt"
path = "./ckpt/vit_b_16_224.ckpt"
vit_path = download(vit_url, path, replace=True)
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)# 定义学习率
lr = nn.cosine_decay_lr(min_lr=float(0), max_lr=0.00005, total_step=epoch_size * step_size, step_per_epoch=step_size, decay_epoch=10)# 定义优化器
network_opt = nn.Adam(network.trainable_params(), lr, momentum)# 定义损失函数
class CrossEntropySmooth(LossBase):def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):super(CrossEntropySmooth, self).__init__()self.onehot = ops.OneHot()self.sparse = sparseself.on_value = ms.Tensor(1.0 - smooth_factor, ms.float32)self.off_value = ms.Tensor(1.0 * smooth_factor / (num_classes - 1), ms.float32)self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)def construct(self, logit, label):if self.sparse:label = self.onehot(label, ops.shape(logit)[1], self.on_value, self.off_value)loss = self.ce(logit, label)return lossnetwork_loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=0.1, num_classes=num_classes)# 设置检查点
ckpt_config = CheckpointConfig(save_checkpoint_steps=step_size, keep_checkpoint_max=100)
ckpt_callback = ModelCheckpoint(prefix='vit_b_16', directory='./ViT', config=ckpt_config)# 初始化模型
ascend_target = (ms.get_context("device_target") == "Ascend")
if ascend_target:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O2")
else:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O0")# 训练模型
model.train(epoch_size, dataset_train, callbacks=[ckpt_callback, LossMonitor(125), TimeMonitor(125)], dataset_sink_mode=False)

在这里插入图片描述

模型验证

模型验证过程主要应用了ImageFolderDataset,CrossEntropySmooth和Model等接口。以下是验证ViT模型的代码:

dataset_val = ImageFolderDataset(os.path.join(data_path, "val"), shuffle=True)trans_val = [transforms.Decode(),transforms.Resize(224 + 32),transforms.CenterCrop(224),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_val = dataset_val.map(operations=trans_val, input_columns=["image"])
dataset_val = dataset_val.batch(batch_size=16, drop_remainder=True)# 构建模型
network = ViT()# 加载预训练模型参数
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)network_loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=0.1, num_classes=num_classes)# 定义评价指标
eval_metrics = {'Top_1_Accuracy': train.Top1CategoricalAccuracy(), 'Top_5_Accuracy': train.Top5CategoricalAccuracy()}if ascend_target:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O2")
else:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O0")# 验证模型
result = model.eval(dataset_val)
print(result)

模型推理

在进行模型推理之前,首先要定义一个对推理图片进行数据预处理的方法。以下是推理ViT模型的代码:

dataset_infer = ImageFolderDataset(os.path.join(data_path, "infer"), shuffle=True)trans_infer = [transforms.Decode(),transforms.Resize([224, 224]),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_infer = dataset_infer.map(operations=trans_infer, input_columns=["image"], num_parallel_workers=1)
dataset_infer = dataset_infer.batch(1)# 读取推理数据
for i, image in enumerate(dataset_infer.create_dict_iterator(output_numpy=True)):image = image["image"]image = ms.Tensor(image)prob = model.predict(image)label = np.argmax(prob.asnumpy(), axis=1)mapping = index2label()output = {int(label): mapping[int(label)]}print(output)show_result(img="./dataset/infer/n01440764/ILSVRC2012_test_00000279.JPEG", result=output, out_file="./dataset/infer/ILSVRC2012_test_00000279.JPEG")

在这里插入图片描述
在这里插入图片描述

相关文章:

【MindSpore学习打卡】应用实践-计算机视觉-深入解析 Vision Transformer(ViT):从原理到实践

在近年来的深度学习领域,Transformer模型凭借其在自然语言处理(NLP)中的卓越表现,迅速成为研究热点。尤其是基于自注意力(Self-Attention)机制的模型,更是推动了NLP的飞速发展。然而&#xff0c…...

Debezium系列之:支持在一个数据库connector采集中过滤某些表的删除事件

Debezium系列之:支持在一个数据库connector采集中过滤某些表的删除事件 一、需求二、相关技术三、参数设置四、消费数据一、需求 在一个数据库的connector中采集了多张表,部分表存在数据归档的业务场景,会定期从表中删除历史数据,希望能过滤掉存在数据归档这些表的删除事件…...

SQL Server端口配置指南:最佳实践与技巧

1. 引言 SQL Server通常使用默认端口1433进行通信。为了提高安全性和性能,正确配置SQL Server的端口非常重要。本指南将帮助您了解如何配置和优化SQL Server的端口设置,以满足不同环境和需求。 2. 端口配置基础 2.1 默认端口 SQL Server的默认端口是…...

FastGPT 报错:undefined 该令牌无权使用模型:gpt-3.5-turbo (request id: xxx)

目录 一、FastGPT 报错 二、解决方法 一、FastGPT 报错 进行对话时 FastGPT 报错如下所示。 [Error] 2024-07-01 09:25:23 sse error: undefined 该令牌无权使用模型:gpt-3.5-turbo (request id: xxxxx) {message: 403 该令牌无权使用模型:gpt-3.5-turbo (request id: x…...

springboot系列八: springboot静态资源访问,Rest风格请求处理, 接收参数相关注解

文章目录 WEB开发-静态资源访问官方文档基本介绍快速入门注意事项和细节 Rest风格请求处理基本介绍应用实例注意事项和细节思考题 接收参数相关注解基本介绍应用实例PathVariableRequestHeaderRequestParamCookieValueRequestBodyRequestAttributeSessionAttribute ⬅️ 上一篇…...

# 职场生活之道:善于团结

在职场这个大舞台上,每个人都是演员,也是观众。要想在这个舞台上站稳脚跟,除了专业技能,更要学会如何与人相处,如何团结他人。团结,是职场生存的重要法则之一。 1. 主动团结:多一个朋友&#x…...

go sync包(五) WaitGroup

WaitGroup sync.WaitGroup 可以等待一组 Goroutine 的返回,一个比较常见的使用场景是批量发出 RPC 或者 HTTP 请求: requests : []*Request{...} wg : &sync.WaitGroup{} wg.Add(len(requests))for _, request : range requests {go func(r *Reque…...

基于深度学习的相机内参标定

基于深度学习的相机内参标定 相机内参标定(Camera Intrinsic Calibration)是计算机视觉中的关键步骤,用于确定相机的内部参数(如焦距、主点位置、畸变系数等)。传统的标定方法依赖于已知尺寸的标定板,通常…...

适合金融行业的国产传输软件应该是怎样的?

对于金融行业来说,正常业务开展离不开文件传输场景,一般来说,金融行业常用的文件传输工具有IM通讯、邮件、自建文件传输系统、FTP应用、U盘等,这些传输工具可以基础实现金融机构的文件传输需求,但也存在如下问题&#…...

昇思25天学习打卡营第9天|MindSpore使用静态图加速(基于context的开启方式)

在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。 在静态图模式下,MindSpore通过源码转换的方式,将Python的源码转换成中间表达IR(Intermediate Repr…...

class类和style内联样式的绑定

这里的绑定其实就是v-bind的绑定,如代码所示,div后面的引号就是v-bind绑定,然后大括号将整个对象括起来,对象内先是属性,属性后接的是变量,这个变量是定义在script中的,后通过这个变量&#xff…...

3033.力扣每日一题7/5 Java

博客主页:音符犹如代码系列专栏:算法练习关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ 目录 思路 解题方法 时间复杂度 空间复杂度 Code 思路 首先创建一个与…...

GPT-5:下一代AI如何彻底改变我们的未来

GPT-5 发布前瞻:技术突破与未来展望 随着科技的飞速发展,人工智能领域不断迎来新的突破。根据最新消息,OpenAI 的首席技术官米拉穆拉蒂在一次采访中确认,GPT-5 将在一年半后发布,并描述了其从 GPT-4 到 GPT-5 的飞跃如…...

重载一元运算符

自增运算符 #include<iostream> using namespace std; class CGirl { public:string name;int ranking;CGirl() { name "zhongge"; ranking 5; }void show() const{ cout << "name : "<<name << " , ranking : " <…...

10元 DIY 一个柔性灯丝氛围灯

之前TikTok上特别火的线性氛围灯Augelight刚出来的时候一度卖到80多美金&#xff0c;国内1688也能到400多人民币。 随着各路国内厂商和DIY创客的跟进&#xff0c;功能变多的同时价格一路下滑&#xff0c;虽然有的质感的确感人&#xff0c;但是便宜啊。 甚至关注的up有把成本搞到…...

表单自定义组件 - 可选择卡片SelectCard

import React from react; import styles from ./index.module.less;type OptionsType {/*** 每个item渲染一行&#xff0c;第0项为标题*/labels?: any[];/*** 自定义渲染内容*/label?: string | React.ReactNode;value: any; }; interface IProps {value?: any;onChange?…...

Ubuntu / Debian安装FTP服务

本章教程,记录在Ubuntu中安装FTP服务的具体步骤。FTP默认端口:21 1、安装 pure-ftpd sudo apt-get install pure-ftpd2、修改默认配置 # 与 centos 不同,这里需要在 /etc/pure-ftpd/conf 文件夹下执行下列命令,增加对应配置文件: # 创建 /etc/pure-ftpd/conf/PureDB 文件…...

若依 Vue 前端分离 3.8.8 版中生成的前端代码中关于下拉框只有下拉箭头的问题

生成代码修改前 <el-form-item label"课程学科" prop"subject"><el-select v-model"queryParams.subject" placeholder"请选择课程学科" clearable><el-optionv-for"dict in course_subject":key"dict…...

C++把一个类封装成动态链接库

一、步骤 1. 创建类头文件 首先&#xff0c;定义你要封装的类。例如&#xff0c;创建一个名为MyClass的类&#xff1a; // MyClass.h #pragma once#ifdef MYCLASS_EXPORTS #define MYCLASS_API __declspec(dllexport) #else #define MYCLASS_API __declspec(dllimport) #end…...

每天一个项目管理概念之项目章程

项目管理中&#xff0c;项目章程扮演着至关重要的角色。它是项目正式启动的标志&#xff0c;为项目的执行提供法律和组织上的认可。项目章程是项目管理知识体系&#xff08;PMBOK&#xff09;中定义的关键文档之一&#xff0c;对于确保项目的顺利进行具有决定性的影响。 定义与…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...