当前位置: 首页 > news >正文

【优化论】约束优化算法

在这里插入图片描述

约束优化算法是一类专门处理目标函数在存在约束条件下求解最优解的方法。为了更好地理解约束优化算法,我们需要了解一些核心概念和基本方法。

约束优化的核心概念

  1. 可行域(Feasible Region)
    • 比喻:想象你在一个园艺场里种植不同种类的植物,但只有特定区域可以种植。可行域就是这些允许种植的区域。
    • 技术细节:可行域是满足所有约束条件的所有点的集合。若约束条件为 g i ( x ) ≤ 0 g_i(x) \leq 0 gi(x)0 h j ( x ) = 0 h_j(x) = 0 hj(x)=0 ,则可行域可以表示为 { x ∣ g i ( x ) ≤ 0 , h j ( x ) = 0 } \{ x \, | \, g_i(x) \leq 0, \, h_j(x) = 0 \} {xgi(x)0,hj(x)=0}
  2. 拉格朗日乘子法(Lagrange Multipliers)
    • 比喻:假设你在调整种植区域时,既想保持植物健康生长(目标函数),又要遵循园艺场的规定(约束条件)。拉格朗日乘子法就像在这两者之间找到一个平衡点
    • 技术细节:拉格朗日乘子法引入拉格朗日乘子 λ \lambda λ ,构造拉格朗日函数 L ( x , λ ) = f ( x ) + λ g ( x ) L(x, \lambda) = f(x) + \lambda g(x) L(x,λ)=f(x)+λg(x) 。通过求解 ∇ L = 0 \nabla L = 0 L=0 可以找到约束优化问题的解。

常用的约束优化算法

  1. 罚函数法(Penalty Method)
    • 比喻:罚函数法就像在种植区域外种植植物时会受到罚款,这样你会尽量保持在可行域内
    • 技术细节:将约束条件转换为目标函数的一部分,加上一个惩罚项,使得在违反约束条件时目标函数的值变得很大。例如,对于约束 g ( x ) ≤ 0 g(x) \leq 0 g(x)0 ,构造目标函数 f ( x ) + 1 2 ρ max ⁡ ( 0 , g ( x ) ) 2 f(x) + \frac{1}{2}\rho \max(0, g(x))^2 f(x)+21ρmax(0,g(x))2 ,其中 ρ \rho ρ 是罚参数。
  2. 障碍函数法(Barrier Method)
    • 比喻:障碍函数法就像在可行域边界设置了障碍物,防止你越过边界。
    • 技术细节:引入障碍函数 ϕ ( x ) \phi(x) ϕ(x) ,当 x x x 靠近约束边界时,障碍函数值趋于无穷大。例如,对于约束 g ( x ) ≤ 0 g(x) \leq 0 g(x)0 ,构造目标函数 f ( x ) − μ log ⁡ ( − g ( x ) ) f(x) - \mu \log(-g(x)) f(x)μlog(g(x)) ,其中 μ \mu μ 是障碍参数。
  3. 拉格朗日乘子法(Lagrangian Method)
    • 比喻:拉格朗日乘子法就像同时调整种植区域和遵守规定的权重,使两者达到平衡。
    • 技术细节:构造拉格朗日函数 L ( x , λ , ν ) = f ( x ) + ∑ λ i g i ( x ) + ∑ ν j h j ( x ) L(x, \lambda, \nu) = f(x) + \sum \lambda_i g_i(x) + \sum \nu_j h_j(x) L(x,λ,ν)=f(x)+λigi(x)+νjhj(x) ,通过求解 ∇ L = 0 \nabla L = 0 L=0 可以找到问题的鞍点,从而求解优化问题。

实例一

让我们通过一个实例来具体了解约束优化的过程:

假设我们要最小化函数 f ( x ) = x 1 2 + x 2 2 f(x) = x_1^2 + x_2^2 f(x)=x12+x22 ,但有约束 g ( x ) = x 1 + x 2 − 1 ≤ 0 g(x) = x_1 + x_2 - 1 \leq 0 g(x)=x1+x210

  1. 罚函数法
    • 构造罚函数: P ( x ) = x 1 2 + x 2 2 + 1 2 ρ max ⁡ ( 0 , x 1 + x 2 − 1 ) 2 P(x) = x_1^2 + x_2^2 + \frac{1}{2}\rho \max(0, x_1 + x_2 - 1)^2 P(x)=x12+x22+21ρmax(0,x1+x21)2
    • x 1 + x 2 ≤ 1 x_1 + x_2 \leq 1 x1+x21 时,无惩罚项;当 x 1 + x 2 > 1 x_1 + x_2 > 1 x1+x2>1 时,有惩罚项,导致目标函数值增加。【目标是使目标函数最小】
  2. 障碍函数法
    • 构造障碍函数: B ( x ) = x 1 2 + x 2 2 − μ log ⁡ ( 1 − x 1 − x 2 ) B(x) = x_1^2 + x_2^2 - \mu \log(1 - x_1 - x_2) B(x)=x12+x22μlog(1x1x2)
    • x 1 + x 2 x_1 + x_2 x1+x2 接近 1 1 1 时, − log ⁡ ( 1 − x 1 − x 2 ) -\log(1 - x_1 - x_2) log(1x1x2) 的值趋于无穷大,使得目标函数值增大。
  3. 拉格朗日乘子法
    • 构造拉格朗日函数: L ( x , λ ) = x 1 2 + x 2 2 + λ ( x 1 + x 2 − 1 ) L(x, \lambda) = x_1^2 + x_2^2 + \lambda (x_1 + x_2 - 1) L(x,λ)=x12+x22+λ(x1+x21)
    • 求解 ∇ L = 0 \nabla L = 0 L=0 得到: 2 x 1 + λ = 0 2x_1 + \lambda = 0 2x1+λ=0 2 x 2 + λ = 0 2x_2 + \lambda = 0 2x2+λ=0 x 1 + x 2 − 1 = 0 x_1 + x_2 - 1 = 0 x1+x21=0
    • 解得 x 1 = x 2 = 1 2 , λ = − 1 x_1 = x_2 = \frac{1}{2} ,\lambda = -1 x1=x2=21λ=1

实例二

我们需要最小化函数 f ( x , y ) = x + 3 y f(x, y) = x + \sqrt{3}y f(x,y)=x+3 y ,并且满足约束条件 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1

罚函数法

  1. 构造罚函数
    首先,我们将约束条件转换为一个惩罚项。对于约束条件 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1 ,我们可以构造以下罚函数: P ( x , y ) = ( x 2 + y 2 − 1 ) 2 P(x, y) = (x^2 + y^2 - 1)^2 P(x,y)=(x2+y21)2

    这里,我们使用平方形式来确保任何违约束的情况都会被显著地惩罚

  2. 构造新的目标函数
    将惩罚项加入到目标函数中,形成新的目标函数: F ( x , y ) = x + 3 y + ρ 2 ( x 2 + y 2 − 1 ) 2 F(x, y) = x + \sqrt{3}y + \frac{\rho}{2} (x^2 + y^2 - 1)^2 F(x,y)=x+3 y+2ρ(x2+y21)2

    其中, ρ \rho ρ 是一个正的罚参数,用来调整惩罚项的权重。

  3. 求解优化问题
    我们的目标是找到使新的目标函数 F ( x , y ) F(x, y) F(x,y) 最小的 x x x y y y 值。

在这里插入图片描述

二次罚函数法算法详解

在这里插入图片描述

基本概念

  1. 目标函数:我们想最小化的函数。例如, f ( x , y ) = x + 3 y f(x, y) = x + \sqrt{3}y f(x,y)=x+3 y
  2. 约束条件:限制条件,必须满足。例如, x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1

罚函数法通过将约束条件转换为惩罚项,加入到目标函数中,从而形成新的目标函数。这个新目标函数在每次迭代时会逐步增加惩罚力度,使得解最终满足约束条件。

步骤解析

第一步:初始化

  1. 给定初始罚参数 σ 1 > 0 \sigma_1 > 0 σ1>0
    • 这是初始的惩罚参数。惩罚参数决定了违反约束条件时受到的惩罚程度。
    • 例如,设定 σ 1 = 1 \sigma_1 = 1 σ1=1
  2. 设定初始点 x 0 x^0 x0
    • 这是我们开始优化的初始猜测值。
    • 例如, x 0 = [ 0.5 , 0.5 ] x^0 = [0.5, 0.5] x0=[0.5,0.5]
  3. 设定迭代次数 k ← 1 k \leftarrow 1 k1
    • 这是一个计数器,用于跟踪迭代次数。
  4. 设定惩罚因子增长系数 ρ > 1 \rho > 1 ρ>1
    • 这是一个用来增加惩罚参数的因子,每次迭代后惩罚参数会乘以这个因子。
    • 例如,设定 ρ = 10 \rho = 10 ρ=10

第二步:迭代过程

  1. while 循环
    • 这个循环会持续运行,直到满足某个收敛准则(例如,目标函数值变化很小,或达到最大迭代次数)。
  2. 以当前点为初始点,求解新的点
    • 我们要最小化新的目标函数 P E ( x , σ k ) P_E(x, \sigma_k) PE(x,σk) ,找到新的 x k + 1 x^{k+1} xk+1

    • 新的目标函数形式为:

      P E ( x , σ k ) = f ( x ) + σ k 2 ( x 2 + y 2 − 1 ) 2 P_E(x, \sigma_k) = f(x) + \frac{\sigma_k}{2} (x^2 + y^2 - 1)^2 PE(x,σk)=f(x)+2σk(x2+y21)2

    • 使用数值优化方法(如梯度下降法)来求解这个新的目标函数。

  3. 更新罚参数
    • 计算新的罚参数 σ k + 1 = ρ σ k \sigma_{k+1} = \rho \sigma_k σk+1=ρσk
  4. 更新迭代次数
    • k ← k + 1 k \leftarrow k + 1 kk+1
  5. 结束迭代
    • 当满足收敛准则时,结束 while 循环。

详细解释与实例

初始化

我们设定初始参数:

σ 1 = 1 , x 0 = [ 0.5 , 0.5 ] , ρ = 10 , k = 1 \sigma_1 = 1, \quad x^0 = [0.5, 0.5], \quad \rho = 10, \quad k = 1 σ1=1,x0=[0.5,0.5],ρ=10,k=1

迭代过程

假设我们要最小化以下目标函数:

f ( x , y ) = x + 3 y f(x, y) = x + \sqrt{3}y f(x,y)=x+3 y

并且满足约束条件:

x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1

第一次迭代

  1. 构造新的目标函数

    P E ( x , σ 1 ) = x + 3 y + 1 2 σ 1 ( x 2 + y 2 − 1 ) 2 P_E(x, \sigma_1) = x + \sqrt{3}y + \frac{1}{2} \sigma_1 (x^2 + y^2 - 1)^2 PE(x,σ1)=x+3 y+21σ1(x2+y21)2

    其中 σ 1 = 1 \sigma_1 = 1 σ1=1

  2. 求解新目标函数
    使用数值优化方法找到最小化 P E ( x , 1 ) P_E(x, 1) PE(x,1) x x x y y y 值。
    假设我们找到新的点 x 1 x^1 x1

  3. 更新罚参数

    σ 2 = ρ σ 1 = 10 × 1 = 10 \sigma_2 = \rho \sigma_1 = 10 \times 1 = 10 σ2=ρσ1=10×1=10

  4. 更新迭代次数

    k ← 2 k \leftarrow 2 k2

第二次迭代

  1. 构造新的目标函数

    P E ( x , σ 2 ) = x + 3 y + 1 2 σ 2 ( x 2 + y 2 − 1 ) 2 P_E(x, \sigma_2) = x + \sqrt{3}y + \frac{1}{2} \sigma_2 (x^2 + y^2 - 1)^2 PE(x,σ2)=x+3 y+21σ2(x2+y21)2

    其中 σ 2 = 10 \sigma_2 = 10 σ2=10

  2. 求解新目标函数
    使用数值优化方法找到最小化 P E ( x , 10 ) P_E(x, 10) PE(x,10) x x x y y y 值。
    假设我们找到新的点 x 2 x^2 x2

  3. 更新罚参数

    σ 3 = ρ σ 2 = 10 × 10 = 100 \sigma_3 = \rho \sigma_2 = 10 \times 10 = 100 σ3=ρσ2=10×10=100

  4. 更新迭代次数

    k ← 3 k \leftarrow 3 k3

这个过程不断重复,直到满足收敛准则为止。

什么是收敛准则

收敛准则是用来决定优化算法何时停止迭代的标准。常见的收敛准则包括以下几种:

  1. 目标函数值变化很小
    • 如果在连续的迭代中,目标函数的值变化很小(小于某个阈值),则认为算法已收敛,可以停止迭代。
    • 例如,设定阈值为 ϵ \epsilon ϵ,如果 ∣ f ( x k + 1 ) − f ( x k ) ∣ < ϵ |f(x^{k+1}) - f(x^k)| < \epsilon f(xk+1)f(xk)<ϵ,则停止迭代。
  2. 梯度值很小
    • 如果目标函数的梯度(或导数)值很小,表示已经到达了极值点附近,则可以停止迭代。
    • 例如,如果 ∥ ∇ f ( x k ) ∥ < ϵ \|\nabla f(x^k)\| < \epsilon ∥∇f(xk)<ϵ,则停止迭代。
  3. 迭代次数达到上限
    • 如果迭代次数达到了预先设定的最大迭代次数,则停止迭代。
    • 例如,设定最大迭代次数为 N N N,如果 k ≥ N k \geq N kN,则停止迭代。

相关文章:

【优化论】约束优化算法

约束优化算法是一类专门处理目标函数在存在约束条件下求解最优解的方法。为了更好地理解约束优化算法&#xff0c;我们需要了解一些核心概念和基本方法。 约束优化的核心概念 可行域&#xff08;Feasible Region&#xff09;&#xff1a; 比喻&#xff1a;想象你在一个园艺场…...

7寸微型FPV无人机技术详解

对于7寸微型FPV&#xff08;First Person View&#xff0c;第一人称视角&#xff09;无人机技术的详解&#xff0c;可以从以下几个方面进行介绍&#xff1a; 一、定义与基本概念 FPV无人机&#xff0c;全称为“第一人称视角无人机”&#xff0c;它利用安装在无人机上的摄像头…...

大数据面试题之Presto[Trino](2)

目录 描述Presto中的Connector是什么&#xff1f; Presto如何实现数据源的插件化&#xff1f; 如何在单机上安装Presto&#xff1f; 描述在集群环境中部署Presto的步骤。 如何为Presto配置JVM参数&#xff1f; 如何优化Presto的配置以提高性能&#xff1f; Presto的日…...

STM32和DHT11使用显示温湿度度(代码理解)+单总线协议

基于STM32CT&#xff0c;利用DHT11采集温湿度数据&#xff0c;在OLED上显示。一定要阅读DHT11数据手册。 1、 DHT11温湿度传感器 引脚说明 1、VDD 供电3.3&#xff5e;5.5V DC 2、DATA 串行数据&#xff0c;单总线 3、NC 空脚 4、GND 接地&#xff0c;电源负极 硬件电路 微…...

EVM-MLIR:以MLIR编写的EVM

1. 引言 EVM_MLIR&#xff1a; 以MLIR编写的EVM。 开源代码实现见&#xff1a; https://github.com/lambdaclass/evm_mlir&#xff08;Rust&#xff09; 为使用MLIR和LLVM&#xff0c;将EVM-bytecode&#xff0c;转换为&#xff0c;machine-bytecode。LambdaClass团队在2周…...

深入Django(八)

掌握Django的管理后台 引言 在前七天的教程中&#xff0c;我们介绍了Django的基础架构、模型、视图、模板、URL路由、表单系统以及数据库迁移。今天&#xff0c;我们将深入了解Django的管理后台&#xff0c;这是一个功能强大的内置管理界面&#xff0c;用于创建、更新、查看和…...

华为开发者大会2024纪要:鸿蒙OS的全新篇章与AI大模型的革命

华为开发者大会2024纪要:鸿蒙OS的全新篇章与AI大模型的革命 在科技的浪潮中,华为再次引领潮流,2024年的开发者大会带来了一系列令人瞩目的创新成果。从鸿蒙操作系统的全新Beta版到盘古大模型的震撼发布,华为正以前所未有的速度重塑智能生态。以下是本次大会的亮点,让我们…...

吴恩达深度学习笔记:机器学习策略(2)(ML Strategy (2)) 2.7-2.8

目录 第三门课 结构化机器学习项目&#xff08;Structuring Machine Learning Projects&#xff09;第二周&#xff1a;机器学习策略&#xff08;2&#xff09;(ML Strategy (2))2.7 迁移学习&#xff08;Transfer learning&#xff09; 第三门课 结构化机器学习项目&#xff0…...

云计算渲染时代:选择Blender或KeyShot进行高效渲染

在云渲染技术日益成熟的背景下&#xff0c;挑选一款贴合项目需求的3D渲染软件显得尤为关键。当前&#xff0c;Blender与KeyShot作为业界领先的全能渲染解决方案&#xff0c;广受推崇。它们虽皆能创造出令人信服的逼真视觉效果&#xff0c;但在特色功能上各有所长。本篇文章旨在…...

html5中的iframe

HTML5中的iframe 浏览上下文是浏览器展示文档的环境&#xff0c;通常是一个tab标签页&#xff0c;一个窗体或者是浏览器页面的一部分。每个浏览上下文都有一个活动文档的源和一个记录所有展示文档的有序历史。浏览上下文的通讯被严格限制&#xff0c;只有两个同源的浏览器上下…...

海睿思问数(TableGPT):开创企业新一代指标应用模式

1 指标建设对企业经营管理数字化的价值分析 指标是将海量数据中关键信息提炼和挖掘出来&#xff0c;以数据为载体展示企业经营管理和分析中的统计量。它通过分析数据&#xff0c;形成一个具有度量值的汇总结果&#xff0c;使得业务状态可以被描述、量化和分解。指标通常由度量…...

LM-Cocktail:一种创新的模型合并方法打破预训练语言模型微调后的性能局限,实现语言模型在一般任务与特定领域的均衡高性能

LM-Cocktail:一种创新的模型合并方法打破预训练语言模型微调后的性能局限,实现语言模型在一般任务与特定领域的均衡高性能 使语言模型的微调类似于调制一杯精致的鸡尾酒。模型合并可用于提高单个模型的性能。我们发现此方法对于大型语言模型和密集嵌入模型也很有用,并设计了…...

默认导出(default)和命名导出

1.默认导出 优点&#xff1a; 简洁的导入语法&#xff1a; 导入时不需要使用花括号&#xff0c;可以直接重命名。单一职责&#xff1a; 模块导出一个主要功能或对象时&#xff0c;默认导出更符合逻辑。 适用场景&#xff1a; 模块只有一个导出&#xff1a; 如一个组件、一个…...

开发个人Go-ChatGPT--1 项目介绍

开发个人Go-ChatGPT--1 项目介绍 开发个人Go-ChatGPT--1 项目介绍知识点大纲文章目录项目地址 开发个人Go-ChatGPT–1 项目介绍 本文将以一个使用Ollama部署的ChatGPT为背景&#xff0c;主要还是介绍和学习使用 go-zero 框架&#xff0c;开发个人Go-ChatGPT的服务器后端&#…...

皮卡超级壁纸 | 幸运壁纸幸运壁纸app是一款涵盖了热门影视剧、动漫、风景等等资源的装饰工具,

软件下载链接&#xff1a;壁纸下载方式在链接中文章底部 皮卡超级壁纸 皮卡超级壁纸是一款专为手机用户设计的壁纸应用&#xff0c;它提供了丰富多样的高清壁纸资源&#xff0c;让用户的手机界面焕然一新。这款应用以其海量的壁纸库和用户友好的操作界面&#xff0c;在市场上…...

普通集群与镜像集群配置

目录 一. 环境准备 二. 开始配置集群 三. RabbitMQ镜像集群配置 四. 安装并配置负载均衡器HA 一. 环境准备 关闭防火墙和selinux&#xff0c;进行时间同步 主机名系统IP服务rabbitmq-1 Rocky_linux9.4 192.168.226.22RabbitMQ&#xff0c;MySQLrabbitmq-2Rocky_linux9.41…...

2024科技文化节程序设计竞赛

补题链接 https://www.luogu.com.cn/contest/178895#problems A. 签到题 忽略掉大小为1的环&#xff0c;答案是剩下环的大小和减环的数量 #include<bits/stdc.h> #include<iostream> #include<cstdio> #include<vector> #include<map> #incl…...

玩转Easysearch语法

Elasticsearch 是一个基于Apache Lucene的开源分布式搜索和分析引擎&#xff0c;广泛应用于全文搜索、结构化搜索、分析等多种场景。 Easysearch 作为Elasticsearch 的国产化替代方案&#xff0c;不仅保持了与原生Elasticsearch 的高度兼容性&#xff0c;还在功能、性能、稳定性…...

【密码学】RSA公钥加密算法

文章目录 RSA定义RSA加密与解密加密解密 生成密钥对一个例子密钥对生成加密解密 对RSA的攻击通过密文来求得明文通过暴力破解来找出D通过E和N求出D对N进行质因数分解通过推测p和q进行攻击 中间人攻击 一些思考公钥密码比对称密码的机密性更高&#xff1f;对称密码会消失&#x…...

【ARMv8/v9 GIC 系列 5.1 -- GIC GICD_CTRL Enable 1 of N Wakeup Function】

请阅读【ARM GICv3/v4 实战学习 】 文章目录 GIC Enable 1 of N Wakeup Function基本原理工作机制配置方式应用场景小结GIC Enable 1 of N Wakeup Function 在ARM GICv3(Generic Interrupt Controller第三代)规范中,引入了一个名为"Enable 1 of N Wakeup"的功能。…...

C++怎么解决不支持字符串枚举?

首先&#xff0c;有两种方法&#xff1a;使用命名空间和字符串常量与使用 enum class 和辅助函数。 表格直观展示 特性使用命名空间和字符串常量使用 enum class 和辅助函数类型安全性低 - 编译器无法检查字符串有效性&#xff0c;运行时发现错误高 - 编译期类型检查&#xf…...

中英双语介绍四大会计师事务所(Big Four accounting firms)

中文版 “四大会计师事务所”&#xff08;Big Four accounting firms&#xff09;是全球最具影响力和规模最大的四家专业服务公司&#xff0c;它们在审计、税务、咨询和财务咨询等领域占据着主导地位。这四家公司分别是普华永道&#xff08;PwC&#xff09;、德勤&#xff08;…...

ubuntu 查看联网配置

在Ubuntu中&#xff0c;你可以使用多种命令来查看联网配置。以下是一些常用的方法和命令&#xff1a; 查看网络接口配置&#xff1a; 使用 ip 命令可以查看网络接口的配置信息&#xff0c;包括IP地址、子网掩码等。 ip addr show或者&#xff0c;你也可以使用传统的 ifconfig 命…...

【数据分享】全国乡村旅游重点镇(乡)数据(Excel/Shp格式/免费获取)

之前我们分享过从我国文化和旅游部官网整理的2018-2023年我国50个重点旅游城市星级饭店季度经营状况数据&#xff08;可查看之前发布的文章&#xff09;&#xff01;文化和旅游部官网上也分享有很多与旅游相关的常用数据&#xff0c;我们基于官网发布的名单文件整理得到全国乡村…...

停车场小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;车主管理&#xff0c;商家管理&#xff0c;停车场信息管理&#xff0c;预约停车管理&#xff0c;商场收费管理&#xff0c;留言板管理 微信端账号功能包括&#xff1a;系统首页&#xff0c;停车场信息…...

绿色金融相关数据合集(2007-2024年 具体看数据类型)

数据类型&#xff1a; 1.绿色债券数据&#xff1a;2014-2023 2.绿色信贷相关数据&#xff1a;2007-2022 3.全国各省及地级市绿色金融指数&#xff1a;1990-2022 4.碳排放权交易明细数据&#xff1a;2013-2024 5.绿色金融试点DID数据&#xff1a;2010-2023 数据来源&#…...

【matlab 项目工期优化】基于NSGA2/3的项目工期多目标优化(时间-成本-质量-安全)

一 背景介绍 本文分享了一个通用的项目工期优化的案例&#xff0c;决策变量是每个子项目的工期&#xff0c;优化目标是项目的完成时间最小&#xff0c;项目的总成本现值最小&#xff0c;项目的总安全水平最高&#xff0c;项目的总质量水平最高。采用的算法是NSGA2和NSGA3算法。…...

Python考前复习

选择题易错&#xff1a; python3不能完全兼容python2内置函数是python的内置对象之一&#xff0c;无需导入其他模块python中汉字变量合法&#xff0c;如“小李123”合法&#xff1b;但T-C不合法&#xff0c;因为有“-”集合无顺序&#xff0c;不能索引&#xff1b;range(5)[2]…...

虚拟机交叉编译基于ARM平台的opencv(ffmpeg/x264)

背景&#xff1a; 由于手上有一块rk3568的开发板&#xff0c;需要运行yolov5跑深度学习模型&#xff0c;但是原有的opencv不能对x264格式的视频进行解码&#xff0c;这里就需要将ffmpegx264编译进opencv。 但是开发板算力有限&#xff0c;所以这里采用在windows下&#xff0c;安…...

react之错误边界

错误边界实质是指什么 实际上是组件 错误边界捕获什么时候的错误 在渲染阶段的错误 错误边界捕获的是谁的错误 捕获的是子组件的错误 错误边界不能捕获什么错误 1、不能捕获异步代码 2、不能捕获事件处理函数 3、不能捕获服务端渲染 4、不能捕获自身抛出的错误 错误…...

openEuler系统之使用Keepalived+Nginx部署高可用Web集群

Linux系统之使用Keepalived+Nginx部署高可用Web集群 一、本次实践介绍1.1 本次实践简介1.2 本次实践环境规划二、keepalived介绍2.1 keepalived简介2.2 keepalived主要特点和功能2.3 使用场景三、Keepalived和Nginx介绍3.1 Nginx简介3.2 Nginx特点四、master节点安装nginx4.1 安…...

基于图像处理的滑块验证码匹配技术

滑块验证码是一种常见的验证码形式&#xff0c;通过拖动滑块与背景图像中的缺口进行匹配&#xff0c;验证用户是否为真人。本文将详细介绍基于图像处理的滑块验证码匹配技术&#xff0c;并提供优化代码以提高滑块位置偏移量的准确度&#xff0c;尤其是在背景图滑块阴影较浅的情…...

【JavaEE精炼宝库】文件操作(1)——基本知识 | 操作文件——打开实用性编程的大门

目录 一、文件的基本知识1.1 文件的基本概念&#xff1a;1.2 树型结构组织和目录&#xff1a;1.3 文件路径&#xff08;Path&#xff09;&#xff1a;1.4 二进制文件 VS 文本文件&#xff1a;1.5 其它&#xff1a; 二、Java 操作文件2.1 方法说明&#xff1a;2.2 使用演示&…...

常用排序算法_06_归并排序

1、基本思想 归并排序采用分治法 (Divide and Conquer) 的一个非常典型的应。归并排序的思想就是先递归分解数组&#xff0c;再合并数组。归并排序是一种稳定的排序方法。 将数组分解最小之后&#xff08;数组中只有一个元素&#xff0c;数组有序&#xff09;&#xff1b;然后…...

14-8 小型语言模型的兴起

过去几年&#xff0c;我们看到人工智能能力呈爆炸式增长&#xff0c;其中很大一部分是由大型语言模型 (LLM) 的进步推动的。GPT-3 等模型包含 1750 亿个参数&#xff0c;已经展示了生成类似人类的文本、回答问题、总结文档等能力。然而&#xff0c;虽然 LLM 的能力令人印象深刻…...

【Linux】:进程创建与终止

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家解读一下有关Linux程序地址空间的相关知识点&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; C 语 言 专 栏&#xff1a;C语言&#xff1a;从…...

横截面交易策略:概念与示例

数量技术宅团队在CSDN学院推出了量化投资系列课程 欢迎有兴趣系统学习量化投资的同学&#xff0c;点击下方链接报名&#xff1a; 量化投资速成营&#xff08;入门课程&#xff09; Python股票量化投资 Python期货量化投资 Python数字货币量化投资 C语言CTP期货交易系统开…...

4.2 投影

一、投影和投影矩阵 我们以下面两个问题开始&#xff0c;问题一是为了展示投影是很容易视觉化的&#xff0c;问题二是关于 “投影矩阵”&#xff08;projection matrices&#xff09;—— 对称矩阵且 P 2 P P^2P P2P。 b \boldsymbol b b 的投影是 P b P\boldsymbol b Pb。…...

23种设计模式之装饰者模式

深入理解装饰者模式 一、装饰者模式简介1.1 定义1.2 模式类型1.3 主要作用1.4 优点1.5 缺点 二、模式动机三、模式结构四、 装饰者模式的实现4.1 组件接口4.2 具体组件4.3 装饰者抽象类4.4 具体装饰者4.5 使用装饰者模式4.6 输出结果&#xff1a; 五、 应用场景5.1 图形用户界面…...

数据结构--单链表实现

欢迎光顾我的homepage 前言 链表和顺序表都是线性表的一种&#xff0c;但是顺序表在物理结构和逻辑结构上都是连续的&#xff0c;但链表在逻辑结构上是连续的&#xff0c;而在物理结构上不一定连续&#xff1b;来看以下图片来认识链表与顺序表的差别 这里以动态顺序表…...

2024攻防演练:亚信安全推出MSS/SaaS短期定制服务

随着2024年攻防演练周期延长的消息不断传出&#xff0c;各参与方将面临前所未有的挑战。面对强大的攻击队伍和日益严格的监管压力&#xff0c;防守单位必须提前进行全面而周密的准备和部署。为应对这一形势&#xff0c;亚信安全特别推出了为期三个月的MSS/SaaS短期订阅方案。该…...

基于java+springboot+vue实现的在线课程管理系统(文末源码+Lw)236

摘要 本文首先介绍了在线课程管理系统的现状及开发背景&#xff0c;然后论述了系统的设计目标、系统需求、总体设计方案以及系统的详细设计和实现&#xff0c;最后对在线课程管理系统进行了系统检测并提出了还需要改进的问题。本系统能够实现教师管理&#xff0c;科目管理&…...

每日一更 EFK日志分析系统

需要docker和docker-compose环境 下面时docker-compose.yaml文件 [rootnode1 docker-EFK]# cat docker-compose.yaml version: 3.3services:elasticsearch:image: "docker.elastic.co/elasticsearch/elasticsearch:7.17.5"container_name: elasticsearchrestart: …...

python类继承和类变量

Python一些类继承和实例变量的使用 定义基类 class APIException:code 500msg "Sorry, error"error_code 999def __init__(self, msgNone):print("APIException init ...")def error_400(self):pass复用基类的属性值 class ClientTypeError(APIExcept…...

js 随机生成整数

随机生成一个唯一的整数 id export const randomId () > { return Date.now() Math.floor(Math.random() * 10000) } 生成随机ID的方法 // 随机生成0 - 9999 export const randomId ()> { return Math.floor(Math.random() * 10000).toString() } // 随机生成0-999之…...

深入Django(七)

Django的数据库迁移系统 引言 在前六天的教程中&#xff0c;我们介绍了Django的基本概念、模型、视图、模板、URL路由和表单系统。今天&#xff0c;我们将讨论Django的数据库迁移系统&#xff0c;它是管理和跟踪数据库变化的关键组件。 Django数据库迁移概述 Django的数据库…...

【区分vue2和vue3下的element UI Steps 步骤条组件,分别详细介绍属性,事件,方法如何使用,并举例】

在 Vue 2 和 Vue 3 中&#xff0c;Element UI&#xff08;针对 Vue 2&#xff09;和 Element Plus&#xff08;针对 Vue 3&#xff09;提供了 Steps 步骤条组件&#xff0c;用于展示当前操作的进度步骤。虽然这两个库都提供了步骤条组件&#xff0c;但它们在属性、事件和方法的…...

uni-app x 跨平台开发框架

目录 uni-app x 是什么 和Flutter对比 uts语言 uvue渲染引擎 组合式API的写法 选项式API写法 页面生命周期 API pages.json全局配置文件 总结 uni-app x 是什么 uni-app x&#xff0c;是下一代 uni-app&#xff0c;是一个跨平台应用开发引擎。 uni-app x 是一个庞…...

YOLOv8模型调参---数据增强

目录 1.数据预处理 2.数据增强 2.1 数据增强的作用 2.2 数据增强方式与适用场景 2.2.1离线增强&#xff08;Offline Augmentation&#xff09; 2.2.2 在线增强&#xff08;Online Augmentation&#xff09; 3. 数据增强的具体方法 4. YOLOv8的数据增强 4.1 YOLOv8默认…...

【Nginx】docker运行Nginx及配置

Nginx镜像的获取 直接从Docker Hub拉取Nginx镜像通过Dockerfile构建Nginx镜像后拉取 二者区别 主要区别在于定制化程度和构建过程的控制&#xff1a; 直接拉取Nginx镜像&#xff1a; 简便性&#xff1a;直接使用docker pull nginx命令可以快速拉取官方的Nginx镜像。这个过程…...