当前位置: 首页 > news >正文

Mac搭建anaconda环境并安装深度学习库

1. 下载anaconda安装包

根据自己的操作系统不同,选择不同的安装包Anaconda3-2024.06-1-MacOSX-x86_64.pkg,我用的还是旧的intel所以下载这个,https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/,如果mac用的是M1,M2芯片,需要下后缀为_arm64.pkg

2. 安装anaconda

双击打开安装包,一路继续,安装完成打不开请到设置中允许

3. 配置环境变量

打开终端:

source ~/.bash_profile,如果路径中含user/xxx,需要更改用户为自己所在的目录路径,我这里用的opt目录,不用再改,所以直接source ~/.bash_profile,激活环境。

否则需要更改完成保存之后,激活环境

测试环境是否安装成功,如果输出一大堆依赖,则代表安装成功:

conda list

4. 创建3.11.7版本的虚拟环境

1. 命令行输入创建3.17版本的虚拟环境命令:

conda create --name py3117 python=3.11.7

2. 激活虚拟环境:

conda activate py3117

3. 安装常用库:

conda install anaconda

4. 将新的虚拟环境添加到Jupyter:

python -m ipykernel install --name=py3117

5. 安装pytorch, transformers, dashscope, modelscope, gradio 等深度学习的库,这一步最后启动号jupyter再做。

6. jupyter notebook安装目录插件

# (安装了目录插件,我们用jupyter notebook读取python文本时就可以看到python的文本目录了,这样方便查看带有目录的python代码文本。)# 在 cmd黑色命令窗口或者anaconda prompt 执行如下命令, (windows(windows窗口标志)+R,输入cmd,进入cmd命令窗口)# 第一步:更新pip
python -m pip install --upgrade pip --user -i https://pypi.tuna.tsinghua.edu.cn/simple# 第二步:更新Jupyter 
pip install --upgrade jupyter -i https://pypi.tuna.tsinghua.edu.cn/simple# 第三步:安装 jupyter_contrib_nbextensions  
pip install jupyter_contrib_nbextensions -i https://pypi.tuna.tsinghua.edu.cn/simple# 第四步:配置 nbextension
jupyter contrib nbextension install --user# 直接使用以上命令报错:
File "/opt/anaconda3/lib/python3.12/site-packages/jupyter_contrib_core/notebook_compat/nbextensions.py", line 6, in <module>from notebook.extensions import BaseExtensionApp
ModuleNotFoundError: No module named 'notebook.extensions' 
# 解决办法:改用以下命令安装
conda install -c conda-forge jupyter_contrib_nbextensions
# 安装后,再次输入成功
jupyter contrib nbextension install --user###安装问题备注:
出现连接中断之类的,做-i+国内源地址尝试
例如:pip install --upgrade jupyter
加国内源地址:  pip install --upgrade jupyter  -i https://pypi.tuna.tsinghua.edu.cn/simple常用国内源地址
#清华大学源
https://pypi.tuna.tsinghua.edu.cn/simple#阿里巴巴源
https://pypi.doubanio.com/simple#中国科学技术大学源
https://pypi.mirrors.ustc.edu.cn/simple/#豆瓣源
https://pypi.doubanio.com/simple

# 第五步:启动jupyter notebook,选择 Nbextensions,勾选 Table of Contents(2) ,

选做步骤
勾选Collapsible headings---将标题内部的内容全部折叠起来
   Code folding---代码折叠插件,允许你将缩进内容折叠起来,节省屏幕空间
   Hinterland---代码提示自动补全功能

Jupyter页面打开《各种库和模型安装》代码包后,先把Kernel(内核)改为py3117(学习另外三个代码包时也保持使用) 

切换好内核后,开始逐一安装深度学习的库。

 5. 安装深度学习的库

这里可以逐一点击代码框,点Run ,耐心等候下载和安装。下载和安装时,这里会变*,每完成一个代码框,这里会变成数字码。

如果不想在这里安装,也可以在命令行逐一安装

# python版本必须>3.10
# 推荐在安装库之前,先更新conda
# conda update conda# 安装dashscope
!pip install dashscope -i https://pypi.tuna.tsinghua.edu.cn/simple# 安装modelscope
!pip install modelscope -i https://pypi.tuna.tsinghua.edu.cn/simple# 报错:ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
s3fs 2024.3.1 requires fsspec==2024.3.1, but you have fsspec 2024.2.0 which is incompatible.# 安装pytorch
!pip3 install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple# 安装transformers
!pip install transformers -i https://pypi.tuna.tsinghua.edu.cn/simple# 安装datasets
!pip install datasets -i https://pypi.tuna.tsinghua.edu.cn/simple# 安装gradio
!pip install gradio -i https://pypi.tuna.tsinghua.edu.cn/simple# 下载上课用的预训练模型,warning信息请忽略
from modelscope.models import Model
model = Model.from_pretrained('damo/nlp_bert_fill-mask_chinese-base')
model = Model.from_pretrained('damo/nlp_structbert_zero-shot-classification_chinese-base')

如果上面的虚拟环境未切换直接用jupyter安装这些库,则安装到了base内核了,则后续再切换到虚拟环境无法安装的,需要到命令行逐一输入命令安装。

备注: 因为老师给的安装没有用国内镜像,我统一加了国内镜像安装,速度会快些。 

安装完成各种库和模型后,恭喜你!基本环境完成。 

7. 注册账号

注册一个阿里云的账号

我们这次课上会用到阿里的模型,网址https://bailian.console.aliyun.com/#/model-market

注册一个Model Scope的账号

网址https://modelscope.cn/models

退出虚拟环境:conda deactivate
删除虚拟环境:conda env remove --name py3117
现有虚拟环境列表:conda env list

相关文章:

Mac搭建anaconda环境并安装深度学习库

1. 下载anaconda安装包 根据自己的操作系统不同&#xff0c;选择不同的安装包Anaconda3-2024.06-1-MacOSX-x86_64.pkg&#xff0c;我用的还是旧的intel所以下载这个&#xff0c;https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/&#xff0c;如果mac用的是M1&#xff0…...

Linux:文件系统与日志分析

一、block与inode 1.1、概述 文件是存储在硬盘上的&#xff0c;硬盘的最小存储单位叫做“扇区”(sector)&#xff0c;每个扇区存储512字节。 一般连续八个扇区组成一个"块”(block)&#xff0c;一个块是4K大小&#xff0c;是文件存取的最小单位。 文件数据包括实际数据…...

迈阿密色主题学科 HTML5静态导航源码

源码介绍 迈阿密色主题学科 HTML5静态导航源码&#xff0c;源码直接上传可用&#xff0c;有技术的可以拿去写个后端搜索调用百度接口&#xff0c;也可用于做引导页下面加你网址添加一个A标签就行了&#xff0c;很简单&#xff0c;需要的朋友就拿去吧 界面预览 源码下载 迈阿…...

Qt 基础组件速学 鼠标和键盘事件

学习目标&#xff1a; 鼠标事件和键盘事件应用 前置环境 运行环境:qt creator 4.12 学习内容和效果演示&#xff1a; 1.鼠标事件 根据鼠标的坐标位置&#xff0c;做出对应的事件。 2.键盘事件 根据键盘的输入做出对应操作 详细主要代码 1.鼠标事件 #include "main…...

【踩坑】解决undetected-chromedriver报错cannot connect to-chrome

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你&#xff0c;欢迎[点赞、收藏、关注]哦~ 更新&#xff1a; 发现一个非常好用的项目&#xff0c;直接内置uc&#xff1a; GitHub - seleniumbase/SeleniumBase: &#x1f4ca; Pythons all-in…...

PyCharm 2024.1 版本更新亮点:智能编程,高效协作

目录 1. 前言2. 更新内容2.1 智能编码体验2.1.1 Hugging Face 文档预览2.1.2 全行代码补全 2.2 提升编辑器体验2.2.1 粘性行功能2.2.2 编辑器内代码审查 2.3 全新终端体验&#xff08;测试版&#xff09;2.3.1 新终端 Beta 2.4 智能助手&#xff08;特定版本和专业用户&#xf…...

网络安全设备——蜜罐

网络安全设备蜜罐&#xff08;Honeypot&#xff09;是一种主动防御技术&#xff0c;它通过模拟真实网络环境中的易受攻击的目标&#xff0c;以吸引和监测攻击者的活动。具体来说&#xff0c;蜜罐是一种虚拟或实体的计算机系统&#xff0c;它模拟了一个真实的网络系统或应用程序…...

Java与Selenium配置及常见报错解决方法

Java与Selenium配置及常见报错解决方法 1. 简介 Java与Selenium是自动化测试中常用的工具和技术。正确配置开发环境并处理可能出现的问题&#xff0c;对于顺利开展测试工作至关重要。本文将为您详细介绍Java与Selenium的配置过程&#xff0c;并提供常见报错的解决方法。 2. …...

最新扣子(Coze)实战案例:使用图像流做超分,模糊图片秒变清晰,完全免费教程

&#x1f9d9;‍♂️ 大家好&#xff0c;我是斜杠君&#xff0c;手把手教你搭建扣子AI应用。 &#x1f4dc; 本教程是《AI应用开发系列教程之扣子(Coze)实战教程》&#xff0c;完全免费学习。 &#x1f440; 关注斜杠君&#xff0c;可获取完整版教程。&#x1f44d;&#x1f3f…...

数组相关内容

一、数组 就是一个集合&#xff0c;里面存放了相同类型的数据元素 特点&#xff1a; 1.数组中的每个数据元素都是相同的数据类型 2.数组是由连续内存位置组成的 二、一维数组 定义方式 1.数据类型 数组名[数组长度]&#xff1b; 2.数据类型 数组名[数组长度]{值1&#xff0…...

【Python机器学习】模型评估与改进——打乱划分交叉验证

打乱划分交叉验证是一种非常灵活的交叉验证策略。 在打乱划分交叉验证中&#xff0c;每次划分为训练集取样train_size个点&#xff0c;为测试集取样test_size个不相交的点。将这一划分方法重复n_iter次。 举例&#xff1a; import matplotlib.pyplot as plt import mglearnm…...

nodejs操作excel文件实例,读取sheets, 设置cell颜色

本代码是我帮客户做的兼职的实例&#xff0c;涉及用node读取excel文件&#xff0c;遍历sheets&#xff0c;给单元格设置颜色等操作&#xff0c;希望对大家接活有所帮助。 gen.js let dir"Z:\\武汉烟厂\\山东区域\\备档资料\\销区零售终端APP维护清单\\走访档案\\2024年6月…...

用GPT做足球预测案例分享

自从GPT出来后&#xff0c;一直想利用GPT的能力做点什么&#xff0c;想了很多项目&#xff0c;比如用GPT写小说&#xff0c;用GPT做股票分析&#xff0c;用GPT写营销文章&#xff0c;最终我选了一个比较有意思的方向&#xff1a;GPT足球预测。因为每天都有足球比赛&#xff0c;…...

代码随想录| 编辑距离

判断子序列[https://leetcode.cn/problems/is-subsequence/description/] 题意&#xff1a;给定字符串 s 和 t &#xff0c;判断 s 是否为 t 的子序列。 思路&#xff1a;从动态规划&#xff0c; dp[i][j] 表示s的前i-1个元素和t的前j-1个元素相同的子序列元素的个数。 还要对d…...

MOJO编程语言的编译与执行:深入编译器与解释器的工作原理

引言 MOJO编程语言以其面向对象的特性和简洁的语法而受到开发者的欢迎。在MOJO的世界中&#xff0c;编译器和解释器是两个核心组件&#xff0c;它们负责将MOJO代码转换为机器可执行的指令。本文将探讨MOJO编译器和解释器的工作原理&#xff0c;以及它们如何在MOJO编程过程中发…...

nginx-限制客户端并发数

文章目录 前言一、ngx_http_limit_conn_module二、指令介绍1. limit_conn_zone2.limit_conn3. limit_conn_log_level4. limit_conn_status 案例未限制限制 总结 前言 瞬时大量用户访问服务器&#xff0c;导致服务器超载而宕机。 恶意请求攻击服务器&#xff0c;导致服务器超载…...

Vatee万腾平台:智能生活的新选择

在科技飞速发展的今天&#xff0c;智能生活已经不再是遥不可及的梦想&#xff0c;而是逐渐渗透到我们日常生活的方方面面。Vatee万腾平台&#xff0c;作为智能科技领域的佼佼者&#xff0c;正以其创新的技术、丰富的应用场景和卓越的用户体验&#xff0c;成为智能生活的新选择&…...

白嫖A100-interLM大模型部署试用活动,亲测有效-2.Git

申明 以下部分内容来源于活动教学文档&#xff1a; Docs git 安装 是一个开源的分布式版本控制系统&#xff0c;被广泛用于软件协同开发。程序员的必备基础工具。 常用的 Git 操作 git init 初始化一个新的 Git 仓库&#xff0c;在当前目录创建一个 .git 隐藏文件夹来跟踪…...

LeetCode 60.排序排列(dfs暴力)

给出集合 [1,2,3,...,n]&#xff0c;其所有元素共有 n! 种排列。 按大小顺序列出所有排列情况&#xff0c;并一一标记&#xff0c;当 n 3 时, 所有排列如下&#xff1a; "123""132""213""231""312""321" 给定…...

矩阵分析与应用1-矩阵代数基础

矩阵分析与应用1-矩阵代数基础 1 矩阵的基本运算2 矩阵的初等变换3 向量空间、线性映射与Hilbert空间4 内积与范数5 随机向量6 矩阵的性能指标7 逆矩阵与伪逆矩阵8 Moore-Penrose逆矩阵9 矩阵的直和与Hadamard积10 Kronecker积与Khatri-Rao积11 向量化与矩阵化12 稀疏表示与压缩…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...