【YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进NO.59】引入ASPP模块
前言
作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。
链接:https://pan.baidu.com/s/1e83xPdxwmSJ0Nohc_F9nFA
提取码:关注私信后获取
一、解决问题
尝试将原YOLOv5中的sppf改为ASPP,提升精度和效果。
二、基本原理
说明:图片来自DeepLabV3 Rethinking Atrous Convolution for Semantic Image Segmentation

三、添加方法
(1)YOLOv5网络模型更改
添加后的网络模型结构图如下(YOLOv5s基础上添加):


(2)YOLOv7网络模型更改
添加后的网络模型结构图如下(YOLOv7基础上添加,将其中的

改为 [[-1, 1, ASPP, [1024]], # 最终形成结构图如下所示:
# parameters
nc: 1 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple# anchors
anchors:- [12,16, 19,36, 40,28] # P3/8- [36,75, 76,55, 72,146] # P4/16- [142,110, 192,243, 459,401] # P5/32# yolov7 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [32, 3, 1]], # 0[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 [-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 [-1, 1, Conv, [64, 1, 1]],[-2, 1, Conv, [64, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 11[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3], 1, Concat, [1]], # 16-P3/8 [-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]], # 24[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3], 1, Concat, [1]], # 29-P4/16 [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]], # 37[-1, 1, MP, []],[-1, 1, Conv, [512, 1, 1]],[-3, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [512, 3, 2]],[[-1, -3], 1, Concat, [1]], # 42-P5/32 [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]], # 50]# yolov7 head
head:[[-1, 1, ASPP, [1024]], # 51[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[37, 1, Conv, [256, 1, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 63[-1, 1, Conv, [128, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[24, 1, Conv, [128, 1, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]], # 75[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3, 63], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 88[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3, 51], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],[-2, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]], # 101[75, 1, RepConv, [256, 3, 1]],[88, 1, RepConv, [512, 3, 1]],[101, 1, RepConv, [1024, 3, 1]],[[102,103,104], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]
四、总结
预告一下:下一篇内容将继续分享深度学习算法相关改进方法。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦
PS:该方法不仅仅是适用改进YOLOv5,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。
最后,有需要的请关注私信我吧。关注免费领取深度学习算法学习资料!
YOLO系列算法改进方法 | 目录一览表
[💡🎈☁️1. 添加SE注意力机制](https://blog.csdn.net/m0_70388905/article/details/125379649)
[💡🎈☁️2.添加CBAM注意力机制](https://blog.csdn.net/m0_70388905/article/details/125892144)
[💡🎈☁️3. 添加CoordAtt注意力机制](https://blog.csdn.net/m0_70388905/article/details/125379685)
[💡🎈☁️4. 添加ECA通道注意力机制](https://blog.csdn.net/m0_70388905/article/details/125390766)
[💡🎈☁️5. 改进特征融合网络PANET为BIFPN](https://blog.csdn.net/m0_70388905/article/details/125391096)
[💡🎈☁️6. 增加小目标检测层](https://blog.csdn.net/m0_70388905/article/details/125392908)
[💡🎈☁️7. 损失函数改进](https://blog.csdn.net/m0_70388905/article/details/125419887)
[💡🎈☁️8. 非极大值抑制NMS算法改进Soft-nms](https://blog.csdn.net/m0_70388905/article/details/125448230)
[💡🎈☁️9. 锚框K-Means算法改进K-Means++](https://blog.csdn.net/m0_70388905/article/details/125530323)
[💡🎈☁️10. 损失函数改进为SIOU](https://blog.csdn.net/m0_70388905/article/details/125569509)
[💡🎈☁️11. 主干网络C3替换为轻量化网络MobileNetV3](https://blog.csdn.net/m0_70388905/article/details/125593267)
[💡🎈☁️12. 主干网络C3替换为轻量化网络ShuffleNetV2](https://blog.csdn.net/m0_70388905/article/details/125612052)
[💡🎈☁️13. 主干网络C3替换为轻量化网络EfficientNetv2](https://blog.csdn.net/m0_70388905/article/details/125612096)
[💡🎈☁️14. 主干网络C3替换为轻量化网络Ghostnet](https://blog.csdn.net/m0_70388905/article/details/125612392)
[💡🎈☁️15. 网络轻量化方法深度可分离卷积](https://blog.csdn.net/m0_70388905/article/details/125612300)
[💡🎈☁️16. 主干网络C3替换为轻量化网络PP-LCNet](https://blog.csdn.net/m0_70388905/article/details/125651427)
[💡🎈☁️17. CNN+Transformer——融合Bottleneck Transformers](https://blog.csdn.net/m0_70388905/article/details/125691455)
[💡🎈☁️18. 损失函数改进为Alpha-IoU损失函数](https://blog.csdn.net/m0_70388905/article/details/125704413)
[💡🎈☁️19. 非极大值抑制NMS算法改进DIoU NMS](https://blog.csdn.net/m0_70388905/article/details/125754133)
[💡🎈☁️20. Involution新神经网络算子引入网络](https://blog.csdn.net/m0_70388905/article/details/125816412)
[💡🎈☁️21. CNN+Transformer——主干网络替换为又快又强的轻量化主干EfficientFormer](https://blog.csdn.net/m0_70388905/article/details/125840816)
[💡🎈☁️22. 涨点神器——引入递归门控卷积(gnConv)](https://blog.csdn.net/m0_70388905/article/details/126142505)
[💡🎈☁️23. 引入SimAM无参数注意力](https://blog.csdn.net/m0_70388905/article/details/126456722)
[💡🎈☁️24. 引入量子启发的新型视觉主干模型WaveMLP(可尝试发SCI)](https://blog.csdn.net/m0_70388905/article/details/126550613)
[💡🎈☁️25. 引入Swin Transformer](https://blog.csdn.net/m0_70388905/article/details/126674046)
[💡🎈☁️26. 改进特征融合网络PANet为ASFF自适应特征融合网络](https://blog.csdn.net/m0_70388905/article/details/126926244)
[💡🎈☁️27. 解决小目标问题——校正卷积取代特征提取网络中的常规卷积](https://blog.csdn.net/m0_70388905/article/details/126979207)
[💡🎈☁️28. ICLR 2022涨点神器——即插即用的动态卷积ODConv](https://blog.csdn.net/m0_70388905/article/details/127031843)
[💡🎈☁️29. 引入Swin Transformer v2.0版本](https://blog.csdn.net/m0_70388905/article/details/127214397)
[💡🎈☁️30. 引入10月4号发表最新的Transformer视觉模型MOAT结构](https://blog.csdn.net/m0_70388905/article/details/127273808)
[💡🎈☁️31. CrissCrossAttention注意力机制](https://blog.csdn.net/m0_70388905/article/details/127312771)
[💡🎈☁️32. 引入SKAttention注意力机制](https://blog.csdn.net/m0_70388905/article/details/127330663)
[💡🎈☁️33. 引入GAMAttention注意力机制](https://blog.csdn.net/m0_70388905/article/details/127330819)
[💡🎈☁️34. 更换激活函数为FReLU](https://blog.csdn.net/m0_70388905/article/details/127381053)
[💡🎈☁️35. 引入S2-MLPv2注意力机制](https://blog.csdn.net/m0_70388905/article/details/127434190)
[💡🎈☁️36. 融入NAM注意力机制](https://blog.csdn.net/m0_70388905/article/details/127398898)
[💡🎈☁️37. 结合CVPR2022新作ConvNeXt网络](https://blog.csdn.net/m0_70388905/article/details/127533379)
[💡🎈☁️38. 引入RepVGG模型结构](https://blog.csdn.net/m0_70388905/article/details/127532645)
[💡🎈☁️39. 引入改进遮挡检测的Tri-Layer插件 | BMVC 2022](https://blog.csdn.net/m0_70388905/article/details/127471913)
[💡🎈☁️40. 轻量化mobileone主干网络引入](https://blog.csdn.net/m0_70388905/article/details/127558329)
[💡🎈☁️41. 引入SPD-Conv处理低分辨率图像和小对象问题](https://zhuanlan.zhihu.com/p/579212232)
[💡🎈☁️42. 引入V7中的ELAN网络](https://zhuanlan.zhihu.com/p/579533276)
[💡🎈☁️43. 结合最新Non-local Networks and Attention结构](https://zhuanlan.zhihu.com/p/579903718)
[💡🎈☁️44. 融入适配GPU的轻量级 G-GhostNet](https://blog.csdn.net/m0_70388905/article/details/127932181)
[💡🎈☁️45. 首发最新特征融合技术RepGFPN(DAMO-YOLO)](https://blog.csdn.net/m0_70388905/article/details/128157269)
[💡🎈☁️46. 改进激活函数为ACON](https://blog.csdn.net/m0_70388905/article/details/128159516)
[💡🎈☁️47. 改进激活函数为GELU](https://blog.csdn.net/m0_70388905/article/details/128170907)
[💡🎈☁️48. 构建新的轻量网络—Slim-neck by GSConv(2022CVPR)](https://blog.csdn.net/m0_70388905/article/details/128198484)
[💡🎈☁️49. 模型剪枝、蒸馏、压缩](https://blog.csdn.net/m0_70388905/article/details/128222629)
[💡🎈☁️50. 超越ConvNeXt!Conv2Former:用于视觉识别的Transformer风格的ConvNet](https://blog.csdn.net/m0_70388905/article/details/128266070?csdn_share_tail=%7B%22type%22:%22blog%22,%22rType%22:%22article%22,%22rId%22:%22128266070%22,%22source%22:%22m0_70388905%22%7D)
[💡🎈☁️51.融入多分支空洞卷积结构RFB-Bottleneck改进PANet构成新特征融合网络](https://blog.csdn.net/m0_70388905/article/details/128553832)
[💡🎈☁️52.将YOLOv8中的C2f模块融入YOLOv5](https://blog.csdn.net/m0_70388905/article/details/128661165)
[💡🎈☁️53.融入CFPNet网络中的ECVBlock模块,提升小目标检测能力](https://blog.csdn.net/m0_70388905/article/details/128720459)
相关文章:

【YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进NO.59】引入ASPP模块
前言作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍&…...

C++STL set/multiset容器 构造和赋值 大小和交换 插入和删除 查找和统计
文章目录set/multiset容器1 set容器 基本概念2 set容器 构造和赋值3 set容器 大小和交换4 set容器 插入和删除5 set容器 查找和统计set/multiset容器 1 set容器 基本概念 简介: 所有元素都会在插入时会被自动排序,例如,在set容器放入元素1、…...

产品研发项目进度管理软件工具有哪些推荐?整理10款最佳进度管理软件
项目进度管理是确保项目按时完成的关键过程,使用合适的项目进度管理工具能确保帮助项目管理者实时了解和控制项目的进展情况,及时发现和解决问题,减少项目风险,提高项目效率和管理水平。这里将整理出国内外最受欢迎的10款项目进度…...

「ML 实践篇」分类系统:图片数字识别
目的:使用 MNIST 数据集,建立数字图像识别模型,识别任意图像中的数字; 文章目录1. 数据准备(MNIST)2. 二元分类器(SGD)3. 性能测试1. 交叉验证2. 混淆矩阵3. 查准率与查全率4. P-R 曲…...

从大专到测开,上海某字母站大厂的面试题,岗位是测开(25K*16)
简单介绍一句,大专出身,三年经验。跳了四次槽,面试了无数次,现在把自己的面试经验整理出来分享给大家,堪称必杀技! 1,一切从实际出发,对实际工作进行适当修饰 2,不会的简…...

【面试题】Python软件工程师能力评估试题(一)
文章目录前言应试者需知(一)Python 语言基础能力评估1、理解问题并完成代码:2、阅读理解代码,并在空白处补充完整代码:3、编写一个装饰器:exposer4、阅读代码并在空白处补充完整代码:5、自行用P…...
Java八股文(Java多线程面试题)
并行和并发的区别?(1)并行是指两个或者多个事件在同一时刻发生;而并发是指两个或多个事件在同一时间间隔发生;(2)并行是在不同实体上的多个事件,并发是在同一实体上的多个事件&#…...

小程序当前页面如何分享别的页面内容呢?
需求分析 因为功能的需要分为两点 他需要调转转发,并且有首页转发点击button按钮进行转发邀请好友帮忙助力,如何做到一个页面多种转发 如何区分,是button转发还剩右上角三个点转发呢? 通过onShareAppMessage()这个函数的事件…...

编写Java哪个编译器好
现在能够编写Java代码的工具简直不要太多,各种各样五花八门,但目前效率最高的还是Intellij Idea。但这个工具对于完全零基础的小白来说,第一次用起来是比较复杂的,因为它的功能太多了。这就好比你要学开车,如果上来就给…...

第十六章 Java为什么使用序列化
为何要指定serialVersionUID的值如果不指定显示serialVersionUID的值,jvm在序列化时会自动生成一个serialVersionUID,跟属性一起序列化,再进行持久化或者网络传输,在反序列化时,jvm会根据属性自动生成一个新版的serial…...

28岁小公司程序员,无车无房不敢结婚,要不要转行?
大家好,这里是程序员晚枫,又来分享程序员的职场故事了~ 今天分享的这位朋友叫小青,我认识他2年多了。以前从事的是土木行业,2年前找我咨询转行程序员的学习路线和职业规划后,通过自学加入了一家创业公司,成…...

出道即封神的ChatGPT,现在怎么样了?
从互联网的普及到智能手机,都让广袤的世界触手而及,如今身在浪潮中的我们,已深知其力。前阵子爆火的ChatGPT,不少人保持观望态度。现如今,国内关于ChatGPT的各大社群讨论,似乎沉寂了不少,现在怎…...

【计算机视觉】CNN 可视化算法
文章目录一、CAM算法1.1 概述1.2 CAM算法介绍二、Grad-CAM算法2.1 概述2.2 Guided Backpropagation2.3 Occlusion Sensitivity2.4 Grad-CAM 整体结构和效果2.5 Grad-CAM 实现细节一、CAM算法 1.1 概述 本文介绍 2016 年提出的 CAM (Class Activation Mapping) 算法࿰…...
自动抓取服务器巡检、登录、执行命令记录+备份脚本
文章目录 引抓取【巡检日志】语言&时区设置语言设置时区巡检脚本执行效果抓取【登录信息】登录脚本登录脚本低版本的last命令执行效果抓取【history记录】说明配置history授权日志文件显示时间戳持久化到日志未配置history的配置过history的执行脚本执行脚本...

如何用Python求解微分方程组
文章目录odeint简介示例odeint简介 scipy文档中将odeint函数和ode, comples_ode这两个类称为旧API,是scipy早期使用的微分方程求解器,但由于是Fortran实现的,尽管使用起来并不方便,但速度没得说,所以有的时候还挺推荐…...

【微信小程序】-- 自定义组件 - behaviors(三十九)
💌 所属专栏:【微信小程序开发教程】 😀 作 者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...

【微信小程序】-- 自定义组件 - 父子组件之间的通信(三十八)
💌 所属专栏:【微信小程序开发教程】 😀 作 者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...

Java Web 实战 11 - 多线程进阶之常见的锁策略
常见的锁策略常见的锁策略1. 乐观锁 VS 悲观锁2. 普通的互斥锁 VS 读写锁3. 重量级锁 VS 轻量级锁4. 自旋锁 VS 挂起等待锁5. 公平锁 VS 非公平锁6. 可重入锁 vs 不可重入锁7. 常见面试题大家好 , 这篇文章给大家带来的是多线程中常见的锁策略 , 我们会给大家讲解 6 种类别的锁…...

(20)目标检测算法之YOLOv5计算预选框、详解anchor计算
目标检测算法之YOLOv5计算预选框、详解anchor计算 单节段目标检测算法中:预选框的设定直接影响最终的检测精度众所周知,yolov5中采用自适应调整预选框anchor的大小,但万事开头难,配置文件config中的预设还是很重要yolo算法作为on…...

3-1 SpringCloud快速开发入门: Ribbon 是什么
接上一章节Eureka 服务注册中心自我保护机制,这里讲讲Ribbon 是什么 Ribbon 是什么 通常说的负载均衡是指将一个请求均匀地分摊到不同的节点单元上执行,负载均和分为硬件负载均衡和软件负载均衡: **硬件负载均衡:**比如 F5、深信…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...