当前位置: 首页 > news >正文

如何用Python求解微分方程组

文章目录

    • odeint简介
    • 示例

odeint简介

scipy文档中将odeint函数和ode, comples_ode这两个类称为旧API,是scipy早期使用的微分方程求解器,但由于是Fortran实现的,尽管使用起来并不方便,但速度没得说,所以有的时候还挺推荐使用的。

其中,odeint的参数如下

scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0, tfirst=False)

其中func为待求解函数;y0为初值;t为自变量列表,其他参数都有默认选项,可以不填,而且这些参数非常多,其中常用的有

  • args func中除了t之外的其他变量
  • Dfun func的梯度函数,当此参数不为None时,若将col_deriv设为True,则可提升效率。
  • full_output 如果为True,则额外返回一个参数字典
  • ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5,
  • printmessgTrue时打印信息。
  • tfirst 当为False时,func的格式为func(y,t...),否则格式为func(t, y...)

示例

对于常微分方程

θ′′(t)+bθ′(t)+csin⁡θ(t)=0b=0.25;c=5θ(0)=π−0.1;θ′(0)=0\theta''(t)+b\theta'(t)+c\sin\theta(t)=0\\ b=0.25;\quad c=5\\ \theta(0)=\pi-0.1;\quad \theta'(0)=0 θ′′(t)+bθ(t)+csinθ(t)=0b=0.25;c=5θ(0)=π0.1;θ(0)=0

将其中的二阶导数项用一个新变量替代,ω(t)=θ′(t)\omega(t)=\theta'(t)ω(t)=θ(t),则常微分方程可拆分成微分方程组

θ′(t)=ω(t)ω′(t)=−bω(t)−csin⁡θ(t)\begin{aligned} \theta'(t)&=\omega(t)\\ \omega'(t)&=-b\omega(t)-c\sin\theta(t) \end{aligned} θ(t)ω(t)=ω(t)=(t)csinθ(t)

y=[θ,ω]y=[\theta, \omega]y=[θ,ω],则y′=[θ′,ω′]y'=[\theta', \omega']y=[θ,ω],据此可设计函数func

import numpy as np
def pend(y, t, b, c):th, om = ydydt = [om, -b*om - c*np.sin(th)]return dydt

然后调用并求解

from scipy.integrate import odeint
y0 = [np.pi-0.1, 0]
t = np.linspace(0, 10, 101)
sol = odeint(pend, y0, t, args=(0.25, 5))

然后绘制一下结果

import matplotlib.pyplot as plt
plt.plot(t, sol[:,0], label="theta")
plt.plot(t, sol[:,1], label="omega")
plt.legend()
plt.show()

在这里插入图片描述

这个形状还是比较离奇的。

相关文章:

如何用Python求解微分方程组

文章目录odeint简介示例odeint简介 scipy文档中将odeint函数和ode, comples_ode这两个类称为旧API,是scipy早期使用的微分方程求解器,但由于是Fortran实现的,尽管使用起来并不方便,但速度没得说,所以有的时候还挺推荐…...

【微信小程序】-- 自定义组件 - behaviors(三十九)

💌 所属专栏:【微信小程序开发教程】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...

【微信小程序】-- 自定义组件 - 父子组件之间的通信(三十八)

💌 所属专栏:【微信小程序开发教程】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...

Java Web 实战 11 - 多线程进阶之常见的锁策略

常见的锁策略常见的锁策略1. 乐观锁 VS 悲观锁2. 普通的互斥锁 VS 读写锁3. 重量级锁 VS 轻量级锁4. 自旋锁 VS 挂起等待锁5. 公平锁 VS 非公平锁6. 可重入锁 vs 不可重入锁7. 常见面试题大家好 , 这篇文章给大家带来的是多线程中常见的锁策略 , 我们会给大家讲解 6 种类别的锁…...

(20)目标检测算法之YOLOv5计算预选框、详解anchor计算

目标检测算法之YOLOv5计算预选框、详解anchor计算 单节段目标检测算法中:预选框的设定直接影响最终的检测精度众所周知,yolov5中采用自适应调整预选框anchor的大小,但万事开头难,配置文件config中的预设还是很重要yolo算法作为on…...

3-1 SpringCloud快速开发入门: Ribbon 是什么

接上一章节Eureka 服务注册中心自我保护机制,这里讲讲Ribbon 是什么 Ribbon 是什么 通常说的负载均衡是指将一个请求均匀地分摊到不同的节点单元上执行,负载均和分为硬件负载均衡和软件负载均衡: **硬件负载均衡:**比如 F5、深信…...

Java【lambda表达式】语法及使用方式介绍

相关文章目录 第一篇: Java【EE初阶】进程相关知识 进程管理 内存管理 文章目录相关文章目录前言一、lambda表达式 是什么?1, lambda表达式 的背景2, 什么是 函数式接口3, lambda表达式 的语法二、lambda表达式 的使用方式1, 无参无返回值2, 有一个参…...

【AcWing】蓝桥杯备赛-深度优先搜索-dfs(2)

目录 写在前面: 题目:94. 递归实现排列型枚举 - AcWing题库 读题: 输入格式: 输出格式: 数据范围: 输入样例: 输出样例: 解题思路: 代码: AC &…...

‘conda‘不是内部或外部命令,也不是可运行的程序或批处理文件。

Anaconda环境搭建常见问题 conda不是内部或外部命令,也不是可运行的程序或批处理文件。 解决方案:配置环境变量 1.找到Anaconda Nvaigator单机右键 2.更多 3.打开文件所在位置 4.继续Anaconda Nvaigator单机右键,更多,选择文件…...

HTTP 3.0来了,UDP取代TCP成为基础协议,TCP究竟输在哪里?

TCP 是 Internet 上使用和部署最广泛的协议之一,多年来一直被视为网络基石,随着HTTP/3正式被标准化,QUIC协议成功“上位”,UDP“取代”TCP成为基础协议,TCP究竟“输”在哪里? HTTP/3 采用了谷歌多年探索的基…...

《JavaCV从入门到实战教程合集》介绍和目录

前言 《JavaCV从入门到实战教程合集》是2016年《JavaCV开发实战教程》和2018年《JavaCV入门教程》2022年《JavaCV音视频实战宝典》三合一汇总合集,完整包含JavaCV入门教程》、《JavaCV开发实战教程》系列和《JavaCV音视频实战宝典》系列所有付费内容。 《JavaCV入…...

Form Generator扩展 文本 组件

一、form-generator是什么?✨ ⭐️ 🌟 form-generator的作者是这样介绍的:Element UI表单设计及代码生成器,可将生成的代码直接运行在基于Element的vue项目中;也可导出JSON表单,使用配套的解析器将JSON解析成真实的表单。 但目前它提供的组件并不能满足我们在项目中的…...

【C/C++】必知必会知识点大总结

✍个人博客:https://blog.csdn.net/Newin2020?spm1011.2415.3001.5343 📚专栏地址:C/C知识点 📣专栏定位:整理一下 C 相关的知识点,供大家学习参考~ ❤️如果有收获的话,欢迎点赞👍…...

【JavaScript 逆向】百度旋转验证码逆向分析

声明本文章中所有内容仅供学习交流,相关链接做了脱敏处理,若有侵权,请联系我立即删除!案例目标爱企查百度安全验证百度搜索:aHR0cHM6Ly93YXBwYXNzLmJhaWR1LmNvbS9zdGF0aWMvY2FwdGNoYS8以上均做了脱敏处理,B…...

PCL 点云投影到直线(C++详细过程版)

目录 一、算法原理二、代码实现三、结果展示1、原始点云2、投影结果一、算法原理 直线方程有三种表示法:一般式、点向式、参数式。PCL中统一采用的是点向式,直线的点向式方程为: x − x 0 m = y −...

中缀表达式转后缀表示式,及后缀表达式的运算规则

后缀表达式又称为逆波兰表达式 一,中缀表达式如何转后缀表达式 假定给出以下中缀表达式 132*2-1; 要将该表达式转为后缀表达式,我们要按照一定的规则去走,并且用到栈。 先来看规则中缀转后缀的规则: 前提&#x…...

【C++】STL简介

文章目录什么是STLSTL版本 原始版本(HP版本) P.J.版本 RW版本 SGI版本STL六大组件 容器 算法 仿函数 空间配置器 迭代器 配接器STL缺陷什么是STL STL(standard template libaray-标准模板库):是C标准库的重要组成部分,不…...

(小甲鱼python)文件永久存储(上)总结 python文件永久存储(创建打开文件、文件对象的各种方法及含义)

一、文件永久存储 如何将数据永久的存放在硬盘上,具体如下。 1.打开文件 定义:往大了讲计算机系统中由操作系统管理的具有名称的存储区域,往小了讲是生活中的PPT、Excel、word三剑客、视频文件、音频文件等。 创建打开文件: open…...

甲酸溶液除钠离子,丙酸溶液除钾离子,医药液体除钾

水是医药行业中用量大、使用 泛的一种原料,它在生产过程中和药剂药品的制备中发挥着极其重要的作用。制药用水的原水通常为自来水或深井水,原水不能直接用作制剂用水或实验用水。因为原水中含有各类盐类和化合物,溶有CO2,还存在大…...

操作系统(2.2)--进程的描述与控制

目录 二、进程的描述 1.进程的定义和特征 1.1进程的定义 1.2进程的特征 2.进程的基本状态及转换 2.1进程的三种基本状态 2.2 三种基本状态的转换 2.3创建状态和中止状态 3.挂起操作和进程状态的转换 3.1 挂起状态的引入 3.2 引入挂起操作后三个进程状态的转换 …...

Python连接es笔记四之创建和删除操作

这一篇笔记介绍一下索引和数据的创建和删除。 其实对于索引来说,如果可以接触到 kibana 的话,可以很方便的在界面进行操作,这里简单介绍一下如何使用代码来操作索引的创建和删除。 索引的创建和删除操作 使用的还是 es 的连接:…...

字符串填充到指定长度

一、需求 在传输一个文件的时候,传输的是二进制数据,整个数据文件的结构为: 文件名称 文件本身 其中文件名称固定占30个byte,存在的情况就是,有的文件名比较长,有的文件名比较短,所有要补足30…...

macOS虚拟机安装全过程(VMware)

作为一名忠实果粉,我最大的愿望就是能够拥有一台Macbook,体验macOS,但是作为学生党,这价钱,贵到离谱啊~~~ 不过,VMware这个神器,可以解决一切问题:既然macOS可以在Macbook上运行&…...

第十三届蓝桥杯A组:选数异或——三种解法(线段树、DP、ST表)

[蓝桥杯 2022 省 A] 选数异或 题目描述 给定一个长度为 nnn 的数列 A1,A2,⋯,AnA_{1}, A_{2}, \cdots, A_{n}A1​,A2​,⋯,An​ 和一个非负整数 xxx, 给定 mmm 次查询, 每次询问能否从某个区间 [l,r][l, r][l,r] 中选择两个数使得他们的异或等于 xxx 。 输入格式 输入的第一…...

【CTF】CTF竞赛介绍以及刷题网址

CTF(Capture The Flag)中文一般译作夺旗赛,在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式。CTF起源于1996年DEFCON全球黑客大会,以代替之前黑客们通过互相发起真实攻击进行技术比拼的方式。发展至今&…...

Springboot怎么优雅实现大文件的上传

前言在软件工程里,在处理“大”的时候一直是一个难点和难点,如并发大、数据量大、文件大,对硬件进行升级可以解决一些问题,但这并不最聪明的办法,而对于老板来说,这也不是成本最小的办法。作为开发人员来说…...

2月编程语言排行榜新鲜出炉,谁又摘得桂冠?

近日,TIOBE公布了2023年2月编程语言排行榜,本月各个语言表现如何?谁又摘得桂冠?一起来看看吧! TIOBE 2月Top15编程语言: 详细榜单查看TIOBE官网 https://www.tiobe.com/tiobe-index/ 关注IT行业的小伙伴…...

机器学习中的数学原理——模型评估与交叉验证

惭愧惭愧!机器学习中的数学原理这个专栏已经很久没有更新了!前段时间一直在学习深度学习,paddlepaddle,刷题专栏跟新了,这个专栏就被打入冷宫了。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一…...

JAVA开发(JSP的9大内置对象和4大作用域)

背景: 在springboot横行的javaweb开发中,现在的后端开发工程师基本不需要写前端JSP页面。但是作为web开发工程师,不懂JSP的原理和作用,几乎是不行的。 JSP技术介绍: JSP(全称Java Server Pages&#xff…...

(4)EKF失控保护

文章目录 前言 4.1 什么时候会触发? 4.2 当失控保护触发时,会发生什么?...

怎么做赌钱网站代理/杭州关键词优化测试

消息队列 消息队列技术是分布式应用间交换信息的一种技术。消息队列可驻留在内存或磁盘上, 队列存储消息直到它们被应用程序读走。通过消息队列,应用程序可独立地执行--它们不需要知道彼此的位置、或在继续执行前不需要等待接收程序接收此消息。在分布式计算环境中&…...

wordpress怎么汉化插件/河南做网站的公司

In this second part of the series on administration, you will learn how to lock down the site to keep the public from accessing the administration features.在介绍管理部分系列的第二部分,你将学习如何限制访问权限的相关内容。上一节加了三个admin链接&…...

wordpress汉化视频模板/百度手机助手下载安装最新版

Java-odbc-000-连接、插入、查询、修改、删除-2020-6-25 目录提示零、最终效果一、准备二、ListDB.java三、SQLDB.java提示 运行环境jdk1.6 零、最终效果 一、准备 ①sample.mdb(利用微软的access) ②管理工具->ODBC数据管理程序(32位)//虽然我电脑是64位->用户DSN-&…...

dw可以做有后台的网站么?/真正免费建站

题目链接: B君的圆锥 基准时间限制:1 秒 空间限制:131072 KB B君要用一个表面积为S的圆锥将白山云包起来。 B君希望包住的白山云体积尽量大,B君想知道体积最大可以是多少。注意圆锥的表面积包括底面和侧面。Input一行一个整数&…...

wordpress信用卡支付宝/sem投放是什么意思

在 Spring.Net 中对象初始化的方式分为两种: ① 急切实例化,也就是说 Spring.Net 容器初始化的时候将对象先实例化出来。 ② 延迟实例化,也就是说我们在调用 GetObject 方法时才实例化该对象。 Spring.Net 默认使用的 急切实例化 ( lazy-init…...

煤矿网站建设/四川疫情最新情况

http://blog.csdn.net/xnby/article/details/50782913 一句话总结:spark是一个基于内存的大数据计算框架, 上层包括了:Spark SQL类似HiveQL, Spark Streaming 实时数据流计算,MLlib 机器学习算法包,GraphX …...