当前位置: 首页 > news >正文

如何用Python求解微分方程组

文章目录

    • odeint简介
    • 示例

odeint简介

scipy文档中将odeint函数和ode, comples_ode这两个类称为旧API,是scipy早期使用的微分方程求解器,但由于是Fortran实现的,尽管使用起来并不方便,但速度没得说,所以有的时候还挺推荐使用的。

其中,odeint的参数如下

scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0, tfirst=False)

其中func为待求解函数;y0为初值;t为自变量列表,其他参数都有默认选项,可以不填,而且这些参数非常多,其中常用的有

  • args func中除了t之外的其他变量
  • Dfun func的梯度函数,当此参数不为None时,若将col_deriv设为True,则可提升效率。
  • full_output 如果为True,则额外返回一个参数字典
  • ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5,
  • printmessgTrue时打印信息。
  • tfirst 当为False时,func的格式为func(y,t...),否则格式为func(t, y...)

示例

对于常微分方程

θ′′(t)+bθ′(t)+csin⁡θ(t)=0b=0.25;c=5θ(0)=π−0.1;θ′(0)=0\theta''(t)+b\theta'(t)+c\sin\theta(t)=0\\ b=0.25;\quad c=5\\ \theta(0)=\pi-0.1;\quad \theta'(0)=0 θ′′(t)+bθ(t)+csinθ(t)=0b=0.25;c=5θ(0)=π0.1;θ(0)=0

将其中的二阶导数项用一个新变量替代,ω(t)=θ′(t)\omega(t)=\theta'(t)ω(t)=θ(t),则常微分方程可拆分成微分方程组

θ′(t)=ω(t)ω′(t)=−bω(t)−csin⁡θ(t)\begin{aligned} \theta'(t)&=\omega(t)\\ \omega'(t)&=-b\omega(t)-c\sin\theta(t) \end{aligned} θ(t)ω(t)=ω(t)=(t)csinθ(t)

y=[θ,ω]y=[\theta, \omega]y=[θ,ω],则y′=[θ′,ω′]y'=[\theta', \omega']y=[θ,ω],据此可设计函数func

import numpy as np
def pend(y, t, b, c):th, om = ydydt = [om, -b*om - c*np.sin(th)]return dydt

然后调用并求解

from scipy.integrate import odeint
y0 = [np.pi-0.1, 0]
t = np.linspace(0, 10, 101)
sol = odeint(pend, y0, t, args=(0.25, 5))

然后绘制一下结果

import matplotlib.pyplot as plt
plt.plot(t, sol[:,0], label="theta")
plt.plot(t, sol[:,1], label="omega")
plt.legend()
plt.show()

在这里插入图片描述

这个形状还是比较离奇的。

相关文章:

如何用Python求解微分方程组

文章目录odeint简介示例odeint简介 scipy文档中将odeint函数和ode, comples_ode这两个类称为旧API,是scipy早期使用的微分方程求解器,但由于是Fortran实现的,尽管使用起来并不方便,但速度没得说,所以有的时候还挺推荐…...

【微信小程序】-- 自定义组件 - behaviors(三十九)

💌 所属专栏:【微信小程序开发教程】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...

【微信小程序】-- 自定义组件 - 父子组件之间的通信(三十八)

💌 所属专栏:【微信小程序开发教程】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...

Java Web 实战 11 - 多线程进阶之常见的锁策略

常见的锁策略常见的锁策略1. 乐观锁 VS 悲观锁2. 普通的互斥锁 VS 读写锁3. 重量级锁 VS 轻量级锁4. 自旋锁 VS 挂起等待锁5. 公平锁 VS 非公平锁6. 可重入锁 vs 不可重入锁7. 常见面试题大家好 , 这篇文章给大家带来的是多线程中常见的锁策略 , 我们会给大家讲解 6 种类别的锁…...

(20)目标检测算法之YOLOv5计算预选框、详解anchor计算

目标检测算法之YOLOv5计算预选框、详解anchor计算 单节段目标检测算法中:预选框的设定直接影响最终的检测精度众所周知,yolov5中采用自适应调整预选框anchor的大小,但万事开头难,配置文件config中的预设还是很重要yolo算法作为on…...

3-1 SpringCloud快速开发入门: Ribbon 是什么

接上一章节Eureka 服务注册中心自我保护机制,这里讲讲Ribbon 是什么 Ribbon 是什么 通常说的负载均衡是指将一个请求均匀地分摊到不同的节点单元上执行,负载均和分为硬件负载均衡和软件负载均衡: **硬件负载均衡:**比如 F5、深信…...

Java【lambda表达式】语法及使用方式介绍

相关文章目录 第一篇: Java【EE初阶】进程相关知识 进程管理 内存管理 文章目录相关文章目录前言一、lambda表达式 是什么?1, lambda表达式 的背景2, 什么是 函数式接口3, lambda表达式 的语法二、lambda表达式 的使用方式1, 无参无返回值2, 有一个参…...

【AcWing】蓝桥杯备赛-深度优先搜索-dfs(2)

目录 写在前面: 题目:94. 递归实现排列型枚举 - AcWing题库 读题: 输入格式: 输出格式: 数据范围: 输入样例: 输出样例: 解题思路: 代码: AC &…...

‘conda‘不是内部或外部命令,也不是可运行的程序或批处理文件。

Anaconda环境搭建常见问题 conda不是内部或外部命令,也不是可运行的程序或批处理文件。 解决方案:配置环境变量 1.找到Anaconda Nvaigator单机右键 2.更多 3.打开文件所在位置 4.继续Anaconda Nvaigator单机右键,更多,选择文件…...

HTTP 3.0来了,UDP取代TCP成为基础协议,TCP究竟输在哪里?

TCP 是 Internet 上使用和部署最广泛的协议之一,多年来一直被视为网络基石,随着HTTP/3正式被标准化,QUIC协议成功“上位”,UDP“取代”TCP成为基础协议,TCP究竟“输”在哪里? HTTP/3 采用了谷歌多年探索的基…...

《JavaCV从入门到实战教程合集》介绍和目录

前言 《JavaCV从入门到实战教程合集》是2016年《JavaCV开发实战教程》和2018年《JavaCV入门教程》2022年《JavaCV音视频实战宝典》三合一汇总合集,完整包含JavaCV入门教程》、《JavaCV开发实战教程》系列和《JavaCV音视频实战宝典》系列所有付费内容。 《JavaCV入…...

Form Generator扩展 文本 组件

一、form-generator是什么?✨ ⭐️ 🌟 form-generator的作者是这样介绍的:Element UI表单设计及代码生成器,可将生成的代码直接运行在基于Element的vue项目中;也可导出JSON表单,使用配套的解析器将JSON解析成真实的表单。 但目前它提供的组件并不能满足我们在项目中的…...

【C/C++】必知必会知识点大总结

✍个人博客:https://blog.csdn.net/Newin2020?spm1011.2415.3001.5343 📚专栏地址:C/C知识点 📣专栏定位:整理一下 C 相关的知识点,供大家学习参考~ ❤️如果有收获的话,欢迎点赞👍…...

【JavaScript 逆向】百度旋转验证码逆向分析

声明本文章中所有内容仅供学习交流,相关链接做了脱敏处理,若有侵权,请联系我立即删除!案例目标爱企查百度安全验证百度搜索:aHR0cHM6Ly93YXBwYXNzLmJhaWR1LmNvbS9zdGF0aWMvY2FwdGNoYS8以上均做了脱敏处理,B…...

PCL 点云投影到直线(C++详细过程版)

目录 一、算法原理二、代码实现三、结果展示1、原始点云2、投影结果一、算法原理 直线方程有三种表示法:一般式、点向式、参数式。PCL中统一采用的是点向式,直线的点向式方程为: x − x 0 m = y −...

中缀表达式转后缀表示式,及后缀表达式的运算规则

后缀表达式又称为逆波兰表达式 一,中缀表达式如何转后缀表达式 假定给出以下中缀表达式 132*2-1; 要将该表达式转为后缀表达式,我们要按照一定的规则去走,并且用到栈。 先来看规则中缀转后缀的规则: 前提&#x…...

【C++】STL简介

文章目录什么是STLSTL版本 原始版本(HP版本) P.J.版本 RW版本 SGI版本STL六大组件 容器 算法 仿函数 空间配置器 迭代器 配接器STL缺陷什么是STL STL(standard template libaray-标准模板库):是C标准库的重要组成部分,不…...

(小甲鱼python)文件永久存储(上)总结 python文件永久存储(创建打开文件、文件对象的各种方法及含义)

一、文件永久存储 如何将数据永久的存放在硬盘上,具体如下。 1.打开文件 定义:往大了讲计算机系统中由操作系统管理的具有名称的存储区域,往小了讲是生活中的PPT、Excel、word三剑客、视频文件、音频文件等。 创建打开文件: open…...

甲酸溶液除钠离子,丙酸溶液除钾离子,医药液体除钾

水是医药行业中用量大、使用 泛的一种原料,它在生产过程中和药剂药品的制备中发挥着极其重要的作用。制药用水的原水通常为自来水或深井水,原水不能直接用作制剂用水或实验用水。因为原水中含有各类盐类和化合物,溶有CO2,还存在大…...

操作系统(2.2)--进程的描述与控制

目录 二、进程的描述 1.进程的定义和特征 1.1进程的定义 1.2进程的特征 2.进程的基本状态及转换 2.1进程的三种基本状态 2.2 三种基本状态的转换 2.3创建状态和中止状态 3.挂起操作和进程状态的转换 3.1 挂起状态的引入 3.2 引入挂起操作后三个进程状态的转换 …...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

数据链路层的主要功能是什么

数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...